A159547 Smallest number b such that the number whose digits are n in base b is a skinny number.
2, 5, 10, 17, 26, 37, 50, 65, 82, 2, 3, 5, 10, 17, 26, 37, 50, 65, 82, 5, 5, 9, 13, 17, 26, 37, 50, 65, 82, 10, 10, 13, 19, 25, 31, 37, 50, 65, 82, 17, 17, 17, 25, 33, 41, 49, 57, 65, 82, 26, 26, 26, 31, 41, 51, 61, 71, 81, 91, 37, 37, 37, 37, 49, 61, 73, 85, 97, 109
Offset: 1
Examples
a(10) = 2 because 10^2 = 100 in all bases >= 2. a(14) = 17 because 14_16 = 20_10, so the square is 400_10 = (1,9,0)_16, but digitsum((1,9,0)_16) = 10 != digitsum((1,4)_16)^2; while in base 17, 14_17 = 21_10, so the square is 441_10 = (1,8,16)_17 and digitsum((1,8,16)_17) = 25 = digitsum((1,4)_17)^2.
Crossrefs
Cf. A061909.
Programs
-
PARI
a(n) = my(d=digits(n), s); s=vecsum(d); for(b=1+vecmax(d), oo, if(s^2==sumdigits(fromdigits(d, b)^2, b), return(b))); \\ Jinyuan Wang, Jun 19 2021
Formula
a(n) <= 10 iff n is in A061909.
Extensions
More terms from Jinyuan Wang, Jun 19 2021
Comments