A159548 Positive numbers y such that y^2 is of the form x^2+(x+199)^2 with integer x.
181, 199, 221, 865, 995, 1145, 5009, 5771, 6649, 29189, 33631, 38749, 170125, 196015, 225845, 991561, 1142459, 1316321, 5779241, 6658739, 7672081, 33683885, 38809975, 44716165, 196324069, 226201111, 260624909, 1144260529, 1318396691
Offset: 1
Examples
(-19, a(1)) = (-19, 181) is a solution: (-19)^2+(-19+199)^2 = 361+32400 = 32761 = 181^2. (A129993(1), a(2)) = (0, 199) is a solution: 0^2+(0+199)^2 = 39601 = 199^2. (A129993(3), a(4)) = (504, 865) is a solution: 504^2+(504+199)^2 = 254016+494209 = 748225 = 865^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1},{181,199,221,865,995,1145},30] (* Harvey P. Dale, Aug 09 2025 *)
-
PARI
{forstep(n=-20, 50000000, [1, 3], if(issquare(2*n^2+398*n+39601, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=181, a(2)=199, a(3)=221, a(4)=865, a(5)=995, a(6)=1145.
G.f.: x*(1-x)*(181+380*x+601*x^2+380*x^3+181*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 199*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (91443+58282*sqrt(2))/199^2 for n mod 3 = 1.
Comments