cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159565 Positive numbers y such that y^2 is of the form x^2+(x+241)^2 with integer x.

Original entry on oeis.org

221, 241, 265, 1061, 1205, 1369, 6145, 6989, 7949, 35809, 40729, 46325, 208709, 237385, 270001, 1216445, 1383581, 1573681, 7089961, 8064101, 9172085, 41323321, 47001025, 53458829, 240849965, 273942049, 311580889, 1403776469, 1596651269
Offset: 1

Views

Author

Klaus Brockhaus, Apr 16 2009

Keywords

Comments

(-21,a(1)) and (A129991(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+241)^2 = y^2.

Examples

			(-21, a(1)) = (-21, 221) is a solution: (-21)^2+(-21+241)^2 = 441+48400 = 48841 = 221^2.
(A129993(1), a(2)) = (0, 241) is a solution: 0^2+(0+241)^2 = 58081= 241^2.
(A129993(3), a(4)) = (620, 1061) is a solution: 620^2+(620+241)^2 = 384400+741321 = 1125721 = 1061^2.
		

Crossrefs

Cf. A129991, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159566 (decimal expansion of (243+22*sqrt(2))/241), A159567 (decimal expansion of (137283+87958*sqrt(2))/241^2).

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{221,241,265,1061,1205,1369},30] (* Harvey P. Dale, Nov 21 2011 *)
  • PARI
    {forstep(n=-24, 50000000, [3, 1], if(issquare(2*n^2+482*n+58081, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=221, a(2)=241, a(3)=265, a(4)=1061, a(5)=1205, a(6)=1369.
G.f.: x*(1-x)*(221+462*x+727*x^2+462*x^3+221*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 241*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (243+22*sqrt(2))/241 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (137283+87958*sqrt(2))/241^2 for n mod 3 = 1.