A159574 Positive numbers y such that y^2 is of the form x^2+(x+337)^2 with integer x.
313, 337, 365, 1513, 1685, 1877, 8765, 9773, 10897, 51077, 56953, 63505, 297697, 331945, 370133, 1735105, 1934717, 2157293, 10112933, 11276357, 12573625, 58942493, 65723425, 73284457, 343542025, 383064193, 427133117, 2002309657
Offset: 1
Examples
(-25, a(1)) = (-25, 313) is a solution: (-25)^2+(-25+337)^2 = 625+97344 = 97969 = 313^2. (A129993(1), a(2)) = (0, 337) is a solution: 0^2+(0+337)^2 = 113569 = 337^2. (A129993(3), a(4)) = (888, 1513) is a solution: 888^2+(888+337)^2 = 788544+1500625 = 2289169 = 1513^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
PARI
{forstep(n=-28, 50000000, [3, 1], if(issquare(2*n^2+674*n+113569, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6)for n > 6; a(1)=313, a(2)=337, a(3)=365, a(4)=1513, a(5)=1685, a(6)=1877.
G.f.: x*(1-x)*(313+650*x+1015*x^2+650*x^3+313*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 337*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (339+26*sqrt(2))/337 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (278307+179662*sqrt(2))/337^2 for n mod 3 = 1.
Comments