A159589 Positive numbers y such that y^2 is of the form x^2+(x+449)^2 with integer x.
421, 449, 481, 2045, 2245, 2465, 11849, 13021, 14309, 69049, 75881, 83389, 402445, 442265, 486025, 2345621, 2577709, 2832761, 13671281, 15023989, 16510541, 79682065, 87566225, 96230485, 464421109, 510373361, 560872369, 2706844589
Offset: 1
Examples
(-29, a(1)) = (-29, 421) is a solution: (-29)^2+(-29+449)^2 = 841+176400 = 177241 = 421^2. (A130004(1), a(2)) = (0, 449) is a solution: 0^2+(0+449)^2 = 201601 = 449^2. (A130004(3), a(4)) = (1204, 2045) is a solution: 1204^2+(1204+449)^2 = 1449616+2732409 = 4182025 = 2045^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[421,449,481,2045,2245,2465]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 08 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1}, {421,449,481,2045,2245,2465}, 50] (* G. C. Greubel, May 08 2018 *)
-
PARI
{forstep(n=-32, 50000000, [3, 1], if(issquare(2*n^2+898*n+201601, &k), print1(k, ",")))}
-
PARI
x='x+O('x^30); Vec((1-x)*(421+870*x+1351*x^2+870*x^3+421*x^4)/(1- 6*x^3+x^6)) \\ G. C. Greubel, May 08 2018
Formula
a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=421, a(2)=449, a(3)=481, a(4)=2045, a(5)=2245, a(6)=2465.
G.f.: (1-x)*(421+870*x+1351*x^2+870*x^3+421*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 449*A001653(k) for k >= 1.
Comments