cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159589 Positive numbers y such that y^2 is of the form x^2+(x+449)^2 with integer x.

Original entry on oeis.org

421, 449, 481, 2045, 2245, 2465, 11849, 13021, 14309, 69049, 75881, 83389, 402445, 442265, 486025, 2345621, 2577709, 2832761, 13671281, 15023989, 16510541, 79682065, 87566225, 96230485, 464421109, 510373361, 560872369, 2706844589
Offset: 1

Views

Author

Klaus Brockhaus, Apr 18 2009

Keywords

Comments

(-29,a(1)) and (A130004(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+449)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (451+30*sqrt(2))/449 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (507363+329222*sqrt(2))/449^2 for n mod 3 = 1.

Examples

			(-29, a(1)) = (-29, 421) is a solution: (-29)^2+(-29+449)^2 = 841+176400 = 177241 = 421^2.
(A130004(1), a(2)) = (0, 449) is a solution: 0^2+(0+449)^2 = 201601 = 449^2.
(A130004(3), a(4)) = (1204, 2045) is a solution: 1204^2+(1204+449)^2 = 1449616+2732409 = 4182025 = 2045^2.
		

Crossrefs

Cf. A130004, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159590 (decimal expansion of (451+30*sqrt(2))/449), A159591 (decimal expansion of (507363+329222*sqrt(2))/449^2).

Programs

  • Magma
    I:=[421,449,481,2045,2245,2465]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 08 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {421,449,481,2045,2245,2465}, 50] (* G. C. Greubel, May 08 2018 *)
  • PARI
    {forstep(n=-32, 50000000, [3, 1], if(issquare(2*n^2+898*n+201601, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(421+870*x+1351*x^2+870*x^3+421*x^4)/(1- 6*x^3+x^6)) \\ G. C. Greubel, May 08 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=421, a(2)=449, a(3)=481, a(4)=2045, a(5)=2245, a(6)=2465.
G.f.: (1-x)*(421+870*x+1351*x^2+870*x^3+421*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 449*A001653(k) for k >= 1.