A159623 Triangle read by rows: T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 1.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 12, 4, 1, 1, 5, 20, 20, 5, 1, 1, 6, 30, 120, 30, 6, 1, 1, 7, 42, 210, 210, 42, 7, 1, 1, 8, 56, 336, 1680, 336, 56, 8, 1, 1, 9, 72, 504, 3024, 3024, 504, 72, 9, 1, 1, 10, 90, 720, 5040, 30240, 5040, 720, 90, 10, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 4, 12, 4, 1; 1, 5, 20, 20, 5, 1; 1, 6, 30, 120, 30, 6, 1; 1, 7, 42, 210, 210, 42, 7, 1; 1, 8, 56, 336, 1680, 336, 56, 8, 1; 1, 9, 72, 504, 3024, 3024, 504, 72, 9, 1; 1, 10, 90, 720, 5040, 30240, 5040, 720, 90, 10, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_, q_]:= If[Floor[n/2]>=k, n!*q^k/(n-k)!, n!*q^(n-k)/k!]; Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten
-
Sage
f=factorial def T(n,k,q): return f(n)*q^k/f(n-k) if ((n//2)>k-1) else f(n)*q^(n-k)/f(k) flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 28 2021
Formula
T(n, k) = n!*q^k/(n-k)! if floor(n/2) > k-1 otherwise n!*q^(n-k)/k!, with q = 1.
T(n, n-k) = T(n, k).
T(2*n, n) = A001813(n). - G. C. Greubel, Nov 28 2021
Extensions
Edited by N. J. A. Sloane, Apr 17 2009
Comments