A159641 Positive numbers y such that y^2 is of the form x^2+(x+647)^2 with integer x.
613, 647, 685, 2993, 3235, 3497, 17345, 18763, 20297, 101077, 109343, 118285, 589117, 637295, 689413, 3433625, 3714427, 4018193, 20012633, 21649267, 23419745, 116642173, 126181175, 136500277, 679840405, 735437783, 795581917
Offset: 1
Examples
(-35, a(1)) = (-35, 613) is a solution: (-35)^2+(-35+647)^2 = 1225+374544 = 375769 = 613^2. (A130013(1), a(2)) = (0, 647) is a solution: 0^2+(0+647)^2 = 418609 = 647^2. (A130013(3), a(4)) = (1768, 2993) is a solution: 1768^2+(1768+647)^2 = 3125824+5832225 = 8958049 = 2993^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1},{613,647,685,2993,3235,3497},30] (* Harvey P. Dale, Jun 22 2022 *)
-
PARI
{forstep(n=-36, 10000000, [1, 3], if(issquare(2*n^2+1294*n+418609, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=613, a(2)=647, a(3)=685, a(4)=2993, a(5)=3235, a(6)=3497.
G.f.: (1-x)*(613+1260*x+1945*x^2+1260*x^3+613*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 647*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (649+36*sqrt(2))/647 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (1084467+707402*sqrt(2))/647^2 for n mod 3 = 1.
Comments