cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159648 Numerator of Hermite(n, 10/19).

Original entry on oeis.org

1, 20, -322, -35320, -8948, 101825200, 2068806280, -399730640800, -18450359755120, 1939836986158400, 158687177411937760, -10831879491824892800, -1476931152842107545920, 64308780860328720300800, 15148651417782595832021120, -347060128580550788160064000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerator of 1, 20/19, -322/361, -35320/6859, -8948/130321, 101825200/2476099, ...
		

Crossrefs

Cf. A001029 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(20/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 10 2018
  • Maple
    A159648 := proc(n)
            orthopoly[H](n,10/19) ;
            numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator[Table[HermiteH[n,10/19],{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
    Table[19^n*HermiteH[n, 10/19], {n,0,50}] (* G. C. Greubel, Jul 10 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,10/19)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

D-finite with recurrence a(n) - 20*a(n-1) + 722*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 10 2018: (Start)
a(n) = 19^n * Hermite(n, 10/19).
E.g.f.: exp(20*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(20/19)^(n-2*k)/(k!*(n-2*k)!)). (End)