A159649 Numerator of Hermite(n, 11/19).
1, 22, -238, -37004, -298580, 100298792, 3284447224, -362236528016, -24568799886448, 1551764588318560, 193786882605147424, -6940428910346759872, -1691744857677709558592, 22913489210334717241984, 16382813996790345696268160, 128812358991324283435925248
Offset: 0
Examples
Numerator of 1, 22/19, -238/361, -37004/6859, -298580/130321, 100298792/2476099, ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
Crossrefs
Cf. A001029 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(22/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
-
Maple
A159649 := proc(n) orthopoly[H](n,11/19) ; numer(%) ; end proc: # R. J. Mathar, Feb 16 2014
-
Mathematica
Numerator[Table[HermiteH[n, 11/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *) Table[19^n*HermiteH[n, 11/19], {n, 0, 50}] (* G. C. Greubel, Jul 11 2018 *)
-
PARI
a(n)=numerator(polhermite(n,11/19)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
D-finite with recurrence a(n) - 22*a(n-1) + 722*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 19^n * Hermite(n, 11/19).
E.g.f.: exp(22*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(22/19)^(n-2*k)/(k!*(n-2*k)!)). (End)