A159652 Numerator of Hermite(n, 14/19).
1, 28, 62, -38696, -1217780, 77656208, 6570559624, -152431023584, -37475677000048, -168877363780160, 238788382960467424, 7905369289385843072, -1675106997369228675392, -115395115449577347286784, 12491491044719414623199360, 1516175576216471435824394752
Offset: 0
Examples
Numerator of 1, 28/19, 62/361, -38696/6859, -1217780/130321, 77656208/2476099, ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
Crossrefs
Cf. A001029 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(28/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
-
Maple
A159652 := proc(n) orthopoly[H](n,14/19) ; numer(%) ; end proc: # R. J. Mathar, Feb 16 2014
-
Mathematica
Numerator[Table[HermiteH[n, 14/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *) Table[19^n*HermiteH[n, 14/19], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
-
PARI
a(n)=numerator(polhermite(n,14/19)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
D-finite with recurrence a(n) -28*a(n-1) +722*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 19^n * Hermite(n, 14/19).
E.g.f.: exp(28*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(28/19)^(n-2*k)/(k!*(n-2*k)!)). (End)