A159656 Numerator of Hermite(n, 18/19).
1, 36, 574, -31320, -2370804, 5103216, 8742318216, 292616324064, -33649488597360, -2901533477298624, 114199171722894816, 25060241888120278656, -4801113850900597056, -217294775817306515769600, -7777548674818481563737984, 1916423841667868925104549376
Offset: 0
Examples
Numerator of 1, 36/19, 574/361, -31320/6859, -2370804/130321, 5103216/2476099,...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
Crossrefs
Cf. A001029 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(36/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
-
Maple
A159656 := proc(n) orthopoly[H](n,18/19) ; numer(%) ; end proc: # R. J. Mathar, Feb 16 2014
-
Mathematica
Numerator[Table[HermiteH[n, 18/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *) Table[19^n*HermiteH[n,18/19], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
-
PARI
a(n)=numerator(polhermite(n,18/19)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
D-finite with recurrence a(n) -36*a(n-1) +722*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 19^n * Hermite(n, 18/19).
E.g.f.: exp(36*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(36/19)^(n-2*k)/(k!*(n-2*k)!)). (End)