cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159656 Numerator of Hermite(n, 18/19).

Original entry on oeis.org

1, 36, 574, -31320, -2370804, 5103216, 8742318216, 292616324064, -33649488597360, -2901533477298624, 114199171722894816, 25060241888120278656, -4801113850900597056, -217294775817306515769600, -7777548674818481563737984, 1916423841667868925104549376
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerator of 1, 36/19, 574/361, -31320/6859, -2370804/130321, 5103216/2476099,...
		

Crossrefs

Cf. A001029 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(36/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
  • Maple
    A159656 := proc(n)
            orthopoly[H](n,18/19) ;
            numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator[Table[HermiteH[n, 18/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 16 2011 *)
    Table[19^n*HermiteH[n,18/19], {n,0,50}] (* G. C. Greubel, Jul 11 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,18/19)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

D-finite with recurrence a(n) -36*a(n-1) +722*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 19^n * Hermite(n, 18/19).
E.g.f.: exp(36*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(36/19)^(n-2*k)/(k!*(n-2*k)!)). (End)