cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159661 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j) with positive integer elements. the solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j); 13*n(j) + 1 = b(j)*b(j); with integer numbers.

Original entry on oeis.org

1, 25, 599, 14351, 343825, 8237449, 197354951, 4728281375, 113281398049, 2714025271801, 65023325125175, 1557845777732399, 37323275340452401, 894200762393125225, 21423495022094552999, 513269679767876146751, 12297048819406932969025, 294615901985998515109849
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 24*n-23 else 24*Self(n-1) -Self(n-2): n in [1..31]]; // G. C. Greubel, Jun 25 2022
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
    n:=(a^2-1)/C: La:=[op(La),a]: Lb:=[op(Lb),b]: Ln:=[op(Ln),n]: endif: enddo:
  • Mathematica
    LinearRecurrence[{24,-1}, {1,25}, 31] (* G. C. Greubel, Jun 25 2022 *)
  • PARI
    Vec(x*(x+1)/(x^2-24*x+1) + O(x^20)) \\ Colin Barker, Sep 25 2015
    
  • PARI
    a(n) = round((12+sqrt(143))^(-n)*(-11-sqrt(143)+(-11+sqrt(143))*(12+sqrt(143))^(2*n))/22) \\ Colin Barker, Jul 26 2016
    
  • SageMath
    [chebyshev_U(n-1, 12) + chebyshev_U(n-2, 12) for n in (1..30)] # G. C. Greubel, Jun 25 2022

Formula

The a(j) recurrence is a(1)=1; a(2)=23; a(t+2) = 24*a(t+1) - a(t); resulting in a(j) terms 1, 23, 551, 13201, 316273, 7577351, 181540151, 4349386273.
The b(j) recurrence is b(1)=1; b(2)=23; b(t+2) = 24*b(t+1) - b(t); resulting in b(j) terms 1, 25, 599, 14351, 343825, 8237449 as listed above.
The n(j) recurrence is n(0)=n(1)=0; n(2)=48; n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in n(j) terms 0, 0, 48, 27600, 15842400, 9093510048, 5219658925200.
From Colin Barker, Sep 25 2015: (Start)
a(n) = 24*a(n-1)-a(n-2) for n>2.
G.f.: x*(1+x) / (1 - 24*x + x^2). (End)
a(n) = (12+sqrt(143))^(-n)*(-11 - sqrt(143) + (-11+sqrt(143))*(12+sqrt(143))^(2*n))/22. - Colin Barker, Jul 26 2016
From G. C. Greubel, Jun 25 2022: (Start)
a(n) = ChebyshevU(n-1, 12) + Chebyshev(n-2, 12).
E.g.f.: exp(12*x)*(cosh(sqrt(143)*x) + sqrt(13/11)*sinh(sqrt(143)*x)). (End)