cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159665 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j); with positive integer numbers.

Original entry on oeis.org

0, 48, 27600, 15842400, 9093510048, 5219658925200, 2996075129554800, 1719741904705530048, 987128857225844692800, 566610244305730148137200, 325233293102631879186060048, 186683343630666392922650330400, 107155914010709406905722103589600
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,48,27600]; [n le 3 select I[n] else 575*Self(n-1) -575*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Jun 26 2022
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
    n:=(a*a-1)/11: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
  • Mathematica
    LinearRecurrence[{575,-575,1}, {0,48,27600}, 30] (* G. C. Greubel, Jun 26 2022 *)
  • PARI
    concat(0, Vec(-48*x^2/((x-1)*(x^2-574*x+1)) + O(x^30))) \\ Colin Barker, Sep 25 2015
    
  • PARI
    a(n) = round((-24+(12+sqrt(143))*(287+24*sqrt(143))^(-n)-(-12+sqrt(143))*(287+24*sqrt(143))^n)/286) \\ Colin Barker, Jul 26 2016
    
  • SageMath
    [(12/143)*(chebyshev_U(n,287) -573*chebyshev_U(n-1,287) -1) for n in (1..30)] # G. C. Greubel, Jun 26 2022

Formula

The a(j) recurrence is a(1)=1; a(2)=23; a(t+2) = 24*a(t+1) - a(t) resulting in terms 1, 23, 551, 13201, ... (A159664).
The b(j) recurrence is b(1)=1; b(2)=25; b(t+2) = 24*b(t+1) - b(t) resulting in terms 1, 25, 599, 14351, ... (A159661).
The n(j) recurrence is n(0)=n(1)=1; n(2)=48; n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 48, 27600, 15842400 as listed above.
From Colin Barker, Sep 25 2015: (Start)
a(n) = 575*a(n-1) - 575*a(n-2) + a(n-3) for n > 3.
G.f.: 48*x^2 / ((1-x)*(1-574*x+x^2)). (End)
a(n) = (-24 + (12 + sqrt(143))*(287 + 24*sqrt(143))^(-n) - (-12 + sqrt(143))*(287 + 24*sqrt(143))^n)/286. - Colin Barker, Jul 26 2016
From G. C. Greubel, Jun 25 2022: (Start)
a(n) = (12/143)*(ChebyshevU(n, 287) - 573*ChebyshevU(n-1, 287) - 1).
E.g.f.: (12/143)*(exp(287*x)*( (sqrt(143)/12)*sinh(24*sqrt(143)*x) + cosh(24*sqrt(143)*x) ) - exp(x)). (End)