A159690 Positive numbers y such that y^2 is of the form x^2+(x+881)^2 with integer x.
841, 881, 925, 4121, 4405, 4709, 23885, 25549, 27329, 139189, 148889, 159265, 811249, 867785, 928261, 4728305, 5057821, 5410301, 27558581, 29479141, 31533545, 160623181, 171817025, 183790969, 936180505, 1001423009, 1071212269
Offset: 1
Examples
(-41, a(1)) = (-41, 841) is a solution: (-41)^2+(-41+881)^2 = 1681+705600 = 707281 = 841^2. (A130014(1), a(2)) = (0, 881) is a solution: 0^2+(0+881)^2 = 776161 = 881^2. (A130014(3), a(4)) = (2440, 4121) is a solution: 2440^2+(2440+881)^2 = 5953600+11029041 = 16982641 = 4121^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..3501
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[841, 881, 925, 4121, 4405, 4709]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Jun 02 2018
-
Mathematica
CoefficientList[Series[(1 - x)*(841 + 1722*x + 2647*x^2 + 1722*x^3 + 841*x^4)/(1 - 6*x^3 + x^6), {x,0,50}], x] (* or *) LinearRecurrence[{0, 0,6,0,0,-1}, {841, 881, 925, 4121, 4405, 4709}, 30] (* G. C. Greubel, Jun 02 2018 *)
-
PARI
{forstep(n=-44, 10000000, [3, 1], if(issquare(2*n^2+1762*n+776161, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=841, a(2)=881, a(3)=925, a(4)=4121, a(5)=4405, a(6)=4709.
G.f.: (1-x)*(841+1722*x+2647*x^2+1722*x^3+841*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 881*A001653(k) for k >= 1.
Comments