cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159694 a(n) = 2*a(n-1) + 2^(n-1), for n > 0, with a(0)=6.

Original entry on oeis.org

6, 13, 28, 60, 128, 272, 576, 1216, 2560, 5376, 11264, 23552, 49152, 102400, 212992, 442368, 917504, 1900544, 3932160, 8126464, 16777216, 34603008, 71303168, 146800640, 301989888, 620756992, 1275068416, 2617245696, 5368709120
Offset: 0

Views

Author

Philippe Deléham, Apr 20 2009

Keywords

Comments

Diagonal of triangles A062111, A152920.

Examples

			a(0) = 6,
a(1) = 2* 6 + 1 =  13,
a(2) = 2*13 + 2 =  28,
a(3) = 2*28 + 4 =  60,
a(4) = 2*60 + 8 = 128, ...
		

Crossrefs

Seventh row of triangle A062111. - Klaus Brockhaus, Sep 27 2009

Programs

  • Magma
    [(12+n)*2^(n-1): n in [0..30]]; // G. C. Greubel, Sep 27 2022
    
  • Mathematica
    Table[(6 + n/2)*2^n, {n, 0, 30}] (* Amiram Eldar, Jan 19 2021 *)
  • SageMath
    [(12+n)*2^(n-1) for n in range(30)] # G. C. Greubel, Sep 27 2022

Formula

a(n) = Sum_{k=0..n} (k+6)*binomial(n,k).
From Klaus Brockhaus, Sep 27 2009: (Start)
a(n) = (6 + n/2)*2^n.
G.f.: (6 - 11*x)/(1-2*x)^2. (End)
From Amiram Eldar, Jan 19 2021: (Start)
Sum_{n>=0} 1/a(n) = 8192*log(2) - 3934820/693.
Sum_{n>=0} (-1)^n/a(n) = 11509636/3465 - 8192*log(3/2). (End)
E.g.f.: (6 + x)*exp(2*x). - G. C. Greubel, Sep 27 2022