cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159696 a(0)=8, a(n) = 2*a(n-1) + 2^(n-1) for n > 0.

Original entry on oeis.org

8, 17, 36, 76, 160, 336, 704, 1472, 3072, 6400, 13312, 27648, 57344, 118784, 245760, 507904, 1048576, 2162688, 4456448, 9175040, 18874368, 38797312, 79691776, 163577856, 335544320, 687865856, 1409286144, 2885681152, 5905580032
Offset: 0

Views

Author

Philippe Deléham, Apr 20 2009

Keywords

Comments

Diagonal of triangles A062111, A152920.

Examples

			a(0)=8, a(1) = 2*8 + 1 = 17, a(2) = 2*17 + 2 = 36, a(3) = 2*36 + 4 = 76, a(4) = 2*76 + 8 = 160, ...
		

Crossrefs

Programs

  • Magma
    [(16+n)*2^(n-1): n in [0..30]]; // G. C. Greubel, Jun 02 2018
  • Mathematica
    LinearRecurrence[{4,-4}, {8,17}, 30] (* or *) Table[(16+n)*2^(n-1), {n,0,30}] (* G. C. Greubel, Jun 02 2018 *)
  • PARI
    for(n=0, 30, print1((16+n)*2^(n-1), ", ")) \\ G. C. Greubel, Jun 02 2018
    

Formula

a(n) = Sum_{k=0..n} (k+8)*binomial(n,k).
From R. J. Mathar, Apr 20 2009: (Start)
a(n) = (16+n)*2^(n-1).
a(n) = 4*a(n-1) - 4*a(n-2).
G.f.: (8-15*x)/(1-2*x)^2. (End)
E.g.f.: (x+8)*exp(2*x). - G. C. Greubel, Jun 02 2018

Extensions

More terms from R. J. Mathar, Apr 20 2009