A159701 Positive numbers y such that y^2 is of the form x^2+(x+967)^2 with integer x.
925, 967, 1013, 4537, 4835, 5153, 26297, 28043, 29905, 153245, 163423, 174277, 893173, 952495, 1015757, 5205793, 5551547, 5920265, 30341585, 32356787, 34505833, 176843717, 188589175, 201114733, 1030720717, 1099178263
Offset: 1
Examples
(-43, a(1)) = (-43, 925) is a solution: (-43)^2+(-43+967)^2 = 1849+853776 = 855625 = 925^2. (A130017(1), a(2)) = (0, 967) is a solution: 0^2+(0+967)^2 = 935089 = 967^2. (A130017(3), a(4)) = (2688, 4537) is a solution: 2688^2+(2688+967)^2 = 7225344+13359025 = 20584369 = 4537^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..3895
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[925,967,1013,4537,4835,5153]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 22 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1}, {925,967,1013,4537,4835,5153}, 40] (* G. C. Greubel, May 22 2018 *)
-
PARI
{forstep(n=-44, 10000000, [1, 3], if(issquare(2*n^2+1934*n+935089, &k), print1(k, ",")))};
-
PARI
x='x+O('x^30); Vec((1-x)*(925+1892*x+2905*x^2+1892*x^3+925*x^4)/( 1-6*x^3+x^6)) \\ G. C. Greubel, May 22 2018
Formula
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=925, a(2)=967, a(3)=1013, a(4)=4537, a(5)=4835, a(6)=5153.
G.f.: (1-x)*(925+1892*x+2905*x^2+1892*x^3+925*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 967*A001653(k) for k >= 1.
Comments