A334778
Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly k local maxima.
Original entry on oeis.org
1, 0, 1, 0, 4, 2, 0, 18, 66, 6, 0, 72, 1168, 1192, 88, 0, 270, 16220, 61830, 33600, 1480, 0, 972, 202416, 2150688, 3821760, 1268292, 40272, 0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944, 0, 11664, 27517568, 1629254640, 15313310208, 36381368048, 24342647424, 3963672720, 71865728
Offset: 0
Triangle begins:
1;
0, 1;
0, 4, 2;
0, 18, 66, 6;
0, 72, 1168, 1192, 88;
0, 270, 16220, 61830, 33600, 1480;
0, 972, 202416, 2150688, 3821760, 1268292, 40272;
0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944;
...
The T(2,1) = 4 permutations of 1122 with 1 local maximum are 1122, 1221, 2112, 2211.
The T(2,2) = 2 permutations of 1122 with 2 local maxima are 1212, 2121.
The version for permutations of 1..n is
A263789.
-
CircPeaksBySig(sig, D)={
my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
mapput(FC, key, z)); z);
local(FC=Map());
vector(#D, i, my(k=D[i], lev=#sig); if(lev==1, k==1, my(m=sig[lev]); lev*sum(j=1, min(m,k), m*binomial(m-1,j-1)*F(lev-1,k-j,j-1)/j)));
}
Row(n)={ if(n==0, [1], CircPeaksBySig(vector(n,i,2), [0..n])) }
{ for(n=0, 8, print(Row(n))) }
A334772
Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
Original entry on oeis.org
2, 12, 66, 36, 576, 1168, 80, 2610, 17376, 16220, 150, 8520, 129800, 448800, 202416, 252, 22680, 659560, 5748750, 10861056, 2395540, 392, 52416, 2596608, 46412200, 241987500, 253940736, 27517568, 576, 109116, 8505728, 273322980, 3121135440, 9885006250, 5807161344, 310123764
Offset: 2
Array begins:
==========================================================
n\k | 2 3 4 5
----|----------------------------------------------------
2 | 2 12 36 80 ...
3 | 66 576 2610 8520 ...
4 | 1168 17376 129800 659560 ...
5 | 16220 448800 5748750 46412200 ...
6 | 202416 10861056 241987500 3121135440 ...
7 | 2395540 253940736 9885006250 203933233280 ...
8 | 27517568 5807161344 395426250000 13051880894720 ...
...
The T(2,3) = 12 permutations of 111222 with 2 local maxima are 112122, 112212 and their rotations.
The T(3,2) = 66 permutations of 112233 with 2 local maxima are 112323, 113223, 113232, 121233, 121332, 122133, 122313, 123213, 123123, 123132, 131322 and their rotations.
A159722
Number of permutations of 3 indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
Original entry on oeis.org
12, 576, 17376, 448800, 10861056, 253940736, 5807161344, 130675728384, 2903978803200, 63887897001984, 1393919508086784, 30201597684350976, 650495989232173056, 13939199950454784000, 297369599774111563776, 6319103998978368208896, 133816319995412169621504
Offset: 2
-
a(n) = {3*n*(121*20^(n-2) + 15*4^(n-2) - 36*n*4^(n-2))/32} \\ Andrew Howroyd, May 10 2020
-
Vec(12*x*(1 + 2*x)*(1 - 6*x - 108*x^2 + 80*x^3) / ((1 - 4*x)^3*(1 - 20*x)^2) + O(x^20)) \\ Colin Barker, Jul 16 2020
A159728
Number of permutations of 4 indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
Original entry on oeis.org
36, 2610, 129800, 5748750, 241987500, 9885006250, 395426250000, 15570077343750, 605504070312500, 23311913238281250, 890091272109375000, 33749294301074218750, 1272088786561523437500, 47703329503967285156250, 1780924301526757812500000, 66228122463283630371093750
Offset: 2
-
a(n) = {2*n*(121*35^(n-2) + 8*5^(n-2) - 24*n*5^(n-2))/9} \\ Andrew Howroyd, May 10 2020
-
Vec(2*x^2*(3 + 5*x)*(6 - 85*x - 1100*x^2 + 875*x^3) / ((1 - 5*x)^3*(1 - 35*x)^2) + O(x^40)) \\ Colin Barker, Jul 16 2020
A159734
Number of permutations of 5 indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
Original entry on oeis.org
80, 8520, 659560, 46412200, 3121135440, 203933233280, 13051880894720, 822269693093760, 51163456598214400, 3151668992962800640, 192538324414433556480, 11680658351228331345920, 704433549821153777192960, 42266012989435750480281600, 2524689842570106278817955840
Offset: 2
-
a(n) = {n*(23^2*56^(n-2) + 21*6^(n-2) - 75*n*6^(n-2))/10} \\ Andrew Howroyd, May 10 2020
-
Vec(40*x^2*(2 + 3*x)*(1 - 25*x - 303*x^2 + 252*x^3) / ((1 - 6*x)^3*(1 - 56*x)^2) + O(x^18)) \\ Colin Barker, Jul 16 2020
A159717
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 3 local maxima.
Original entry on oeis.org
0, 0, 6, 1192, 61830, 2150688, 62178928, 1629254640, 40346856234, 965510596600, 22606163844396, 521603874280248, 11911230805813846, 269907065756299440, 6079103449024019880, 136243494317831152480, 3040751938796332410018, 67621304208554979697224, 1499043510801269678080708
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 2), [3])[1]} \\ Andrew Howroyd, May 13 2020
A159718
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 4 local maxima.
Original entry on oeis.org
0, 0, 0, 88, 33600, 3821760, 272509552, 15313310208, 750469872312, 33813251867920, 1443455210369040, 59454199364673024, 2389923754993613176, 94450458835284703536, 3687585353084799432720, 142691482885508987276800, 5484263653598164634676600, 209677462059979688650122960
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 2), [4])[1]} \\ Andrew Howroyd, May 13 2020
A159719
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 5 local maxima.
Original entry on oeis.org
0, 0, 0, 0, 1480, 1268292, 279561086, 36381368048, 3573883594170, 296395007981680, 22044296362400136, 1523944523765510064, 100158396249221188476, 6351609408030664973692, 392562103869990035520330, 23810390333486683269302048, 1424190819067621511845096358
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 2), [5])[1]} \\ Andrew Howroyd, May 13 2020
A159720
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 6 local maxima.
Original entry on oeis.org
0, 0, 0, 0, 0, 40272, 62954948, 24342647424, 5320007368884, 848044852469680, 111078667024032048, 12769013592631944576, 1340902091662029846456, 132008300342568131914656, 12398363733385845967412220, 1124539850663707285433353472, 99357839137277548804214431980
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 2), [6])[1]} \\ Andrew Howroyd, May 13 2020
A159737
Number of permutations of 6 indistinguishable copies of 1..n arranged in a circle with exactly 2 local maxima.
Original entry on oeis.org
150, 22680, 2596608, 273322980, 27558217008, 2700777267972, 259275295383552, 24501521550788100, 2286808732032093360, 211301127303186249252, 19362866942233277773632, 1762020891775616889450852, 159395120671659354639719856, 14345560860451487040265198020
Offset: 2
-
a(n) = {3*n*(61^2*84^(n-2) + 96*7^(n-2) - 396*n*7^(n-2))/121} \\ Andrew Howroyd, May 10 2020
-
Vec(6*x^2*(5 + 7*x)*(5 - 196*x - 2401*x^2 + 2058*x^3) / ((1 - 7*x)^3*(1 - 84*x)^2) + O(x^40)) \\ Colin Barker, Jul 18 2020
Showing 1-10 of 10 results.
Comments