cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A269289 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three no more than once.

Original entry on oeis.org

4, 16, 16, 60, 216, 64, 216, 2124, 2592, 256, 756, 19188, 62748, 29160, 1024, 2592, 164556, 1363572, 1698732, 314928, 4096, 8748, 1363572, 27788292, 87559668, 43674876, 3306744, 16384, 29160, 11026764, 544118148, 4204943820, 5306911092
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2016

Keywords

Comments

Table starts
......4.........16.............60...............216...................756
.....16........216...........2124.............19188................164556
.....64.......2592..........62748...........1363572..............27788292
....256......29160........1698732..........87559668............4204943820
...1024.....314928.......43674876........5306911092..........598478857956
...4096....3306744.....1085203980......309846524148........81907569617580
..16384...34012224....26317946844....17623065834612.....10908770041709316
..65536..344373768...626778812268...983118947312628...1424067311317705740
.262144.3443737680.14718495557052.54032675767734132.183070424003703987492

Examples

			Some solutions for n=3 k=4
..0..2..3..3. .0..2..3..1. .0..0..0..1. .0..2..2..2. .2..0..0..2
..2..1..3..1. .2..1..0..2. .2..2..3..1. .0..2..0..0. .0..0..3..3
..3..1..0..1. .1..0..2..0. .1..3..3..3. .2..0..0..2. .0..1..1..0
		

Crossrefs

Column 1 is A000302.
Column 2 is A159739(n+1).
Row 1 is A120926(n+1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 18*a(n-1) -81*a(n-2)
k=3: a(n) = 42*a(n-1) -441*a(n-2)
k=4: a(n) = 98*a(n-1) -2401*a(n-2) for n>3
k=5: a(n) = 234*a(n-1) -14277*a(n-2) +68796*a(n-3) -86436*a(n-4)
k=6: [order 6] for n>7
k=7: [order 10] for n>11
Empirical for row n:
n=1: a(n) = 6*a(n-1) -9*a(n-2)
n=2: a(n) = 14*a(n-1) -49*a(n-2) for n>4
n=3: a(n) = 36*a(n-1) -378*a(n-2) +972*a(n-3) -729*a(n-4) for n>7
n=4: [order 8] for n>12
n=5: [order 18] for n>23
n=6: [order 40] for n>46

A159721 Number of permutations of 3 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.

Original entry on oeis.org

6, 36, 192, 960, 4608, 21504, 98304, 442368, 1966080, 8650752, 37748736, 163577856, 704643072, 3019898880, 12884901888, 54760833024, 231928233984, 979252543488, 4123168604160, 17317308137472, 72567767433216, 303465209266176, 1266637395197952, 5277655813324800
Offset: 2

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Programs

  • Magma
    [3*n*4^(n-2): n in [2..30]]; // G. C. Greubel, Jun 01 2018
  • Mathematica
    LinearRecurrence[{8,-16}, {6,36}, 30] (* or *) Table[3*n*4^(n-2), {n, 2, 30}] (* G. C. Greubel, Jun 01 2018 *)
  • PARI
    for(n=2,30, print1(3*n*4^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
    

Formula

a(n) = (copies*n)*(copies+1)^(n-2), here: copies = 3.
From Colin Barker, Mar 23 2018: (Start)
G.f.: 6*x^2*(1 - 2*x) / (1 - 4*x)^2.
a(n) = 8*a(n-1) - 16*a(n-2) for n>3. (End)
E.g.f.: 3*x*exp(4*x)/4. - G. C. Greubel, Jun 01 2018
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (16/3)*log(4/3) - 3/2.
Sum_{n>=2} (-1)^n/a(n) = (16/3)*log(5/4) - 7/6. (End)

A159727 Number of permutations of 4 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.

Original entry on oeis.org

8, 60, 400, 2500, 15000, 87500, 500000, 2812500, 15625000, 85937500, 468750000, 2539062500, 13671875000, 73242187500, 390625000000, 2075195312500, 10986328125000, 57983398437500, 305175781250000, 1602172851562500
Offset: 2

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Programs

  • Magma
    [ 4*n*5^(n-2) : n in [2..30]]; // G. C. Greubel, Jun 01 2018
  • Mathematica
    LinearRecurrence[{10,-25}, {8,60}, 30] (* or *) Table[4*n*5^(n-2), {n,2,30}] (* G. C. Greubel, Jun 01 2018 *)
  • PARI
    for(n=2, 30, print1(4*n*5^(n-2) , ", ")) \\ G. C. Greubel, Jun 01 2018
    

Formula

a(n) = (4*n)*(4+1)^(n-2).
From Colin Barker, Mar 23 2018: (Start)
G.f.: 4*x^2*(2 - 5*x) / (1 - 5*x)^2.
a(n) = 10*a(n-1) - 25*a(n-2) for n>3. (End)
E.g.f.: 4*x*exp(5*x)/5. - G. C. Greubel, Jun 01 2018
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (25/4)*log(5/4) - 5/4.
Sum_{n>=2} (-1)^n/a(n) = 5/4 - (25/4)*log(6/5). (End)

A159733 Number of permutations of 5 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.

Original entry on oeis.org

10, 90, 720, 5400, 38880, 272160, 1866240, 12597120, 83980800, 554273280, 3627970560, 23581808640, 152374763520, 979552051200, 6269133127680, 39965723688960, 253899891671040, 1608032647249920, 10155995666841600
Offset: 2

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Programs

  • Magma
    [5*n*6^(n-2): n in [2..30]]; // G. C. Greubel, Jun 01 2018
  • Mathematica
    LinearRecurrence[{12,-36}, {10,90}, 30] (* or *) Table[5*n*6^(n-2), {n,2,30}] (* G. C. Greubel, Jun 01 2018 *)
  • PARI
    for(n=2,30, print1(5*n*6^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
    

Formula

a(n) = (copies*n)*(copies+1)^(n-2) where copies=5.
From Colin Barker, Mar 24 2018: (Start)
G.f.: 10*x^2*(1 - 3*x) / (1 - 6*x)^2.
a(n) = 12*a(n-1) - 36*a(n-2) for n>3. (End)
From G. C. Greubel, Jun 01 2018: (Start)
a(n) = 5*n*6^(n-2).
E.g.f.: 5*x*exp(6*x)/6. (End)
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (36/5)*log(6/5) - 6/5.
Sum_{n>=2} (-1)^n/a(n) = 6/5 - (36/5)*log(7/6). (End)

A159715 Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.

Original entry on oeis.org

4, 18, 72, 270, 972, 3402, 11664, 39366, 131220, 433026, 1417176, 4605822, 14880348, 47829690, 153055008, 487862838, 1549681956, 4907326194, 15496819560, 48814981614, 153418513644, 481176247338, 1506290861232, 4707158941350
Offset: 2

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Programs

  • Magma
    [2*n*3^(n-2): n in [2..30]]; // G. C. Greubel, Jun 01 2018
  • Mathematica
    LinearRecurrence[{6,-9}, {}, 30] (* or *) Table[2*n*3^(n-2), {n, 2, 30}] (* G. C. Greubel, Jun 01 2018 *)
  • PARI
    for(n=2, 30, print1(2*n*3^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
    

Formula

a(n) = (copies*n)*(copies+1)^(n-2), here: copies = 2.
Apparently a(n) = A027261(n-1), n > 2. - R. J. Mathar, Apr 21 2009
Conjectures from Colin Barker, Mar 23 2018: (Start)
G.f.: 2*x^2*(2 - 3*x) / (1 - 3*x)^2.
a(n) = 2*3^(n-2)*n for n>1.
a(n) = 6*a(n-1) - 9*a(n-2) for n>3. (End)
E.g.f.: 2*x*exp(3*x)/3. - G. C. Greubel, Jun 01 2018
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (9/2)*log(3/2) - 3/2.
Sum_{n>=2} (-1)^n/a(n) = 3/2 - (9/2)*log(4/3). (End)

A159736 Number of permutations of 6 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.

Original entry on oeis.org

12, 126, 1176, 10290, 86436, 705894, 5647152, 44471322, 345888060, 2663338062, 20338217928, 154231485954, 1162668124884, 8720010936630, 65109414993504, 484251274014186, 3589156501516908, 26519878594541598, 195409631749253880
Offset: 2

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[12, 126]; [n le 2 select I[n] else 14*Self(n-1) - 49*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 01 2018
  • Mathematica
    LinearRecurrence[{14,-49}, {12, 126}, 30] (* or *) Table[6*n*7^(n-2), {n, 2, 30}] (* G. C. Greubel, Jun 01 2018 *)
  • PARI
    for(n=2, 30, print1(6*n*7^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
    

Formula

a(n) = (copies*n)*(copies+1)^(n-2).
From G. C. Greubel, Jun 01 2018: (Start)
a(n) = 6*n*7^(n-2).
a(n) = 14*a(n-1) - 49*a(n-2).
G.f.: x^2*(12-42*x)/(1-14*x+49*x^2).
E.g.f.: 6*x*exp(7*x)/7. (End)
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (49/6)*log(7/6) - 7/6.
Sum_{n>=2} (-1)^n/a(n) = 7/6 - (49/6)*log(8/7). (End)

A159738 Number of permutations of 7 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.

Original entry on oeis.org

14, 168, 1792, 17920, 172032, 1605632, 14680064, 132120576, 1174405120, 10334765056, 90194313216, 781684047872, 6734508720128, 57724360458240, 492581209243648, 4186940278571008, 35465847065542656, 299489375220137984
Offset: 2

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[14, 168]; [n le 2 select I[n] else 16*Self(n-1) - 64*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 01 2018
  • Mathematica
    LinearRecurrence[{16,-64}, {14,168}, 30] (* or *) Table[7*n*8^(n-2), {n,2,30}] (* G. C. Greubel, Jun 01 2018 *)
  • PARI
    for(n=2,30, print1(7*n*8^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
    

Formula

a(n) = (copies*n)*(copies+1)^(n-2).
From G. C. Greubel, Jun 01 2018: (Start)
a(n) = 7*n*8^(n-2).
a(n) = 16*a(n-1) - 64*a(n-2).
G.f.: x^2*(14-56*x)/(1-16*x+64*x^2).
E.g.f.: 7*x*exp(8*x)/8. (End)
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (64/7)*log(8/7) - 8/7.
Sum_{n>=2} (-1)^n/a(n) = 8/7 - (64/7)*log(9/8). (End)

A159740 Number of permutations of 9 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.

Original entry on oeis.org

18, 270, 3600, 45000, 540000, 6300000, 72000000, 810000000, 9000000000, 99000000000, 1080000000000, 11700000000000, 126000000000000, 1350000000000000, 14400000000000000, 153000000000000000
Offset: 2

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[18, 270]; [n le 2 select I[n] else 20*Self(n-1) - 100*Self(n-2): n in [1..10]]; // G. C. Greubel, Jun 01 2018
  • Mathematica
    LinearRecurrence[{20,-100}, {18,270}, 30] (* or *) Table[9*n*10^(n-2), {n,2,30}] (* G. C. Greubel, Jun 01 2018 *)
  • PARI
    m=30; v=concat([18, 270], vector(m-2)); for(n=3, m, v[n]=20*v[n-1] -100*v[n-2]); v \\ G. C. Greubel, Jun 01 2018
    

Formula

a(n) = (copies*n)*(copies+1)^(n-2).
From G. C. Greubel, Jun 01 2018: (Start)
a(n) = 9*n*10^(n-2).
G.f.: x^2*(18-90*x)/(1-20*x+100*x^2).
E.g.f.: 9*x*exp(10*x)/10. (End)
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (100/9)*log(10/9) - 10/9.
Sum_{n>=2} (-1)^n/a(n) = 10/9 - (100/9)*log(11/10). (End)
Showing 1-8 of 8 results.