A159721
Number of permutations of 3 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.
Original entry on oeis.org
6, 36, 192, 960, 4608, 21504, 98304, 442368, 1966080, 8650752, 37748736, 163577856, 704643072, 3019898880, 12884901888, 54760833024, 231928233984, 979252543488, 4123168604160, 17317308137472, 72567767433216, 303465209266176, 1266637395197952, 5277655813324800
Offset: 2
-
[3*n*4^(n-2): n in [2..30]]; // G. C. Greubel, Jun 01 2018
-
LinearRecurrence[{8,-16}, {6,36}, 30] (* or *) Table[3*n*4^(n-2), {n, 2, 30}] (* G. C. Greubel, Jun 01 2018 *)
-
for(n=2,30, print1(3*n*4^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
A159733
Number of permutations of 5 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.
Original entry on oeis.org
10, 90, 720, 5400, 38880, 272160, 1866240, 12597120, 83980800, 554273280, 3627970560, 23581808640, 152374763520, 979552051200, 6269133127680, 39965723688960, 253899891671040, 1608032647249920, 10155995666841600
Offset: 2
-
[5*n*6^(n-2): n in [2..30]]; // G. C. Greubel, Jun 01 2018
-
LinearRecurrence[{12,-36}, {10,90}, 30] (* or *) Table[5*n*6^(n-2), {n,2,30}] (* G. C. Greubel, Jun 01 2018 *)
-
for(n=2,30, print1(5*n*6^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
A159739
Number of permutations of 8 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.
Original entry on oeis.org
16, 216, 2592, 29160, 314928, 3306744, 34012224, 344373768, 3443737680, 34093003032, 334731302496, 3263630199336, 31632108085872, 305023899399480, 2928229434235008, 28001193964872264, 266834907194665104, 2534931618349318488, 24015141647519859360
Offset: 2
-
I:=[16, 216]; [n le 2 select I[n] else 18*Self(n-1) - 81*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 01 2018
-
LinearRecurrence[{18,-81}, {16,216}, 30] (* G. C. Greubel, Jun 01 2018 *)
-
Vec(8*x^2*(2 - 9*x) / (1 - 9*x)^2 + O(x^25)) \\ Colin Barker, Feb 26 2018
A159715
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.
Original entry on oeis.org
4, 18, 72, 270, 972, 3402, 11664, 39366, 131220, 433026, 1417176, 4605822, 14880348, 47829690, 153055008, 487862838, 1549681956, 4907326194, 15496819560, 48814981614, 153418513644, 481176247338, 1506290861232, 4707158941350
Offset: 2
-
[2*n*3^(n-2): n in [2..30]]; // G. C. Greubel, Jun 01 2018
-
LinearRecurrence[{6,-9}, {}, 30] (* or *) Table[2*n*3^(n-2), {n, 2, 30}] (* G. C. Greubel, Jun 01 2018 *)
-
for(n=2, 30, print1(2*n*3^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
A159736
Number of permutations of 6 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.
Original entry on oeis.org
12, 126, 1176, 10290, 86436, 705894, 5647152, 44471322, 345888060, 2663338062, 20338217928, 154231485954, 1162668124884, 8720010936630, 65109414993504, 484251274014186, 3589156501516908, 26519878594541598, 195409631749253880
Offset: 2
-
I:=[12, 126]; [n le 2 select I[n] else 14*Self(n-1) - 49*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 01 2018
-
LinearRecurrence[{14,-49}, {12, 126}, 30] (* or *) Table[6*n*7^(n-2), {n, 2, 30}] (* G. C. Greubel, Jun 01 2018 *)
-
for(n=2, 30, print1(6*n*7^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
A159738
Number of permutations of 7 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.
Original entry on oeis.org
14, 168, 1792, 17920, 172032, 1605632, 14680064, 132120576, 1174405120, 10334765056, 90194313216, 781684047872, 6734508720128, 57724360458240, 492581209243648, 4186940278571008, 35465847065542656, 299489375220137984
Offset: 2
-
I:=[14, 168]; [n le 2 select I[n] else 16*Self(n-1) - 64*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 01 2018
-
LinearRecurrence[{16,-64}, {14,168}, 30] (* or *) Table[7*n*8^(n-2), {n,2,30}] (* G. C. Greubel, Jun 01 2018 *)
-
for(n=2,30, print1(7*n*8^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
A159740
Number of permutations of 9 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.
Original entry on oeis.org
18, 270, 3600, 45000, 540000, 6300000, 72000000, 810000000, 9000000000, 99000000000, 1080000000000, 11700000000000, 126000000000000, 1350000000000000, 14400000000000000, 153000000000000000
Offset: 2
-
I:=[18, 270]; [n le 2 select I[n] else 20*Self(n-1) - 100*Self(n-2): n in [1..10]]; // G. C. Greubel, Jun 01 2018
-
LinearRecurrence[{20,-100}, {18,270}, 30] (* or *) Table[9*n*10^(n-2), {n,2,30}] (* G. C. Greubel, Jun 01 2018 *)
-
m=30; v=concat([18, 270], vector(m-2)); for(n=3, m, v[n]=20*v[n-1] -100*v[n-2]); v \\ G. C. Greubel, Jun 01 2018
A159729
Number of permutations of 4 indistinguishable copies of 1..n arranged in a circle with exactly 3 local maxima.
Original entry on oeis.org
0, 24, 13896, 3347088, 595973360, 93992305032, 14015268159704, 2027725518697376, 287867804621478048, 40320948446041301720, 5589326195307268168392, 768314046269046341078064, 104876358654665681729030736, 14230976452809572524526026408, 1921184312523441298037576065080
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 4), [3])[1]} \\ Andrew Howroyd, May 14 2020
A159730
Number of permutations of 4 indistinguishable copies of 1..n arranged in a circle with exactly 4 local maxima.
Original entry on oeis.org
0, 2, 15042, 18059184, 11195742340, 5293792219344, 2205450812336100, 861515212667884608, 324837276666570610668, 119915580982794765091280, 43656420088142545411963444, 15735834864508561392982184160, 5628506716816811122561964710428, 2000722502787397537117555256499248
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 4), [4])[1]} \\ Andrew Howroyd, May 14 2020
A159731
Number of permutations of 4 indistinguishable copies of 1..n arranged in a circle with exactly 5 local maxima.
Original entry on oeis.org
0, 0, 2988, 27458352, 61383379820, 81667937763552, 85059308335953056, 77970400876665940256, 66589111000653219026676, 54577055338226000658293040, 43623618238133057304530730072, 34310058645060995324654729060496, 26688777245272247361239042667969036
Offset: 1
-
\\ CircPeaksBySig defined in A334778.
a(n) = {CircPeaksBySig(vector(n, i, 4), [5])[1]} \\ Andrew Howroyd, May 14 2020
Showing 1-10 of 11 results.