cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159745 Numerator of Hermite(n, 8/21).

Original entry on oeis.org

1, 16, -626, -38240, 1044556, 151623616, -2180514104, -837280401536, 66007653520, 5908906635694336, 94018537417467616, -50612259928144561664, -1721964008874583797056, 508128734937488699898880, 27874099084755797015426176, -5828388033652017714104551424
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Cf. A009965 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(16/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 22 2018
  • Mathematica
    Numerator[Table[HermiteH[n, 8/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)
  • PARI
    a(n)=numerator(polhermite(n,8/21)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

D-finite with recurrence a(n) -16*a(n-1) +882*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 17 2014
From G. C. Greubel, May 22 2018: (Start)
a(n) = 21^n * Hermite(n,8/21).
E.g.f.: exp(16*x-441*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/21)^(n-2k)/(k!*(n-2k)!). (End)