A159762 Numerator of Hermite(n, 13/21).
1, 26, -206, -51220, -786644, 160251416, 7635636856, -649523935216, -64030044264560, 2918259736005536, 584145244508221216, -10551274514355075904, -5941710299591994211136, -42809778329457726121600, 67014596058555904745723776, 2270994640334597525538334976
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..390
Crossrefs
Cf. A009965 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(26/21)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 21 2018
-
Mathematica
Numerator[Table[HermiteH[n, 13/21], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)
-
PARI
a(n)=numerator(polhermite(n, 13/21)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
From G. C. Greubel, May 22 2018: (Start)
a(n) = 21^n * Hermite(n,13/21).
E.g.f.: exp(26*x-441*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(26/21)^(n-2k)/(k!*(n-2k)!).
a(n+2) = 26*a(n+1) - 882*(n+1)*a(n). (End)