A159764 Riordan array (1/(1+4x+x^2), x/(1+4x+x^2)).
1, -4, 1, 15, -8, 1, -56, 46, -12, 1, 209, -232, 93, -16, 1, -780, 1091, -592, 156, -20, 1, 2911, -4912, 3366, -1200, 235, -24, 1, -10864, 21468, -17784, 8010, -2120, 330, -28, 1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, -151316, 386373
Offset: 0
Examples
Triangle begins 1; -4, 1; 15, -8, 1; -56, 46, -12, 1; 209, -232, 93, -16, 1; -780, 1091, -592, 156, -20, 1; 2911, -4912, 3366, -1200, 235, -24, 1; Triangle (0, -4, 1/4, -1/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins: 1; 0, 1; 0, -4, 1; 0, 15, -8, 1; 0, -56, 46, -12, 1; 0, 209, -232, 93, -16, 1;
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
Crossrefs
Programs
-
Mathematica
CoefficientList[CoefficientList[Series[1/(1 + 4*x + x^2 - y*x), {x, 0, 10}, {y, 0, 10}], x], y]//Flatten (* G. C. Greubel, May 21 2018 *)
-
Sage
@CachedFunction def A159764(n,k): if n< 0: return 0 if n==0: return 1 if k == 0 else 0 return A159764(n-1,k-1)-A159764(n-2,k)-4*A159764(n-1,k) for n in (0..9): [A159764(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
Formula
Number triangle T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,-2),0).
G.f.: 1/(1+4*x+x^2-y*x). - Philippe Deléham, Feb 22 2012
T(n,k) = (-4)*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 22 2012
Comments