cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159772 Number of n-leaf binary trees that do not contain (()((((()())())())())) as a subtree.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 124, 384, 1210, 3865, 12482, 40677, 133572, 441468, 1467296, 4900760, 16439370, 55357305, 187050302, 633998079, 2154950454, 7343407521, 25082709012, 85858848820, 294480653064, 1011871145116, 3482837144984, 12006861566684, 41454180382688
Offset: 1

Views

Author

Eric Rowland, Apr 23 2009

Keywords

Comments

By 'binary tree' we mean a rooted, ordered tree in which each vertex has either 0 or 2 children.
a(n) is also the number of Dyck words of semilength n-1 with no DUUUU.
Also, number of ordered rooted trees with n nodes and all non-root nodes having outdegrees < 4. - Andrew Howroyd, Dec 04 2017

Crossrefs

Column k=4 of A295679.

Programs

  • Mathematica
    terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]];
    col[4] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
  • Maxima
    a(n):=if n=1 then 1 else sum(k*sum(binomial(n-1,j)*sum(binomial(j,i-j)*binomial(n-j-1,3*j-n-k-i+1),i,j,n-k+j-1),j,0,n-1),k,1,n-1)/(n-1); /* Vladimir Kruchinin, Oct 23 2011 */
  • PARI
    Vec(1/(1-serreverse(x*(1-x)/(1-x^4) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
    

Formula

G.f. f(x) satisfies (1 - 4 x) f(x)^3 + (6 x - 1) x f(x)^2 - 4 x^3 f(x) + x^4 = 0.
a(n) = sum(k=1..n-1, k*sum(j=0..n-1, binomial(n-1,j)*sum(i=j..n-k+j-1, binomial(j,i-j)*binomial(n-j-1,3*j-n-k-i+1))))/(n-1), n>1. a(0)=0, a(1)=1. - Vladimir Kruchinin, Oct 23 2011
Conjecture: 2*(n-1)*(2*n-3)*a(n) +(-43*n^2+172*n-177)*a(n-1) +4*(44*n^2-266*n+411)*a(n-2) +8*(-43*n^2+358*n-741)*a(n-3) +96*(3*n^2-29*n+69)*a(n-4) -128*(n-4)*(n-6)*a(n-5) +512*(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, May 30 2014
G.f.: x/(1-x*G(x)) where G(x) is g.f. of A036765. - Andrew Howroyd, Dec 04 2017
From Vaclav Kotesovec, Dec 05 2017: (Start)
Recurrence (of order 4): 2*(n-1)*(2*n - 3)*(13*n^2 - 75*n + 104)*a(n) = 3*(117*n^4 - 1039*n^3 + 3315*n^2 - 4513*n + 2216)*a(n-1) - 12*(39*n^4 - 368*n^3 + 1268*n^2 - 1893*n + 1032)*a(n-2) - 16*(n-4)*(13*n^3 - 75*n^2 + 122*n - 54)*a(n-3) - 64*(n-5)*(n-4)*(13*n^2 - 49*n + 42)*a(n-4).
a(n) ~ sqrt(r*s*(r - s + 2*s^2) / (2*Pi*(r - 6*r^2 - 3*s + 12*r*s))) / (n^(3/2) * r^n), where r = 0.2769531794372340984240353119411920830379502290822... and s = 0.8081460429543529393193017440354060980373344931954... are real roots of the system of equations r^4 + r*(-1 + 6*r)*s^2 + (1 - 4*r)*s^3 = 4*r^3*s, s*(12*r^2 + 3*s - 2*r*(1 + 6*s)) = 4*r^3. (End)
a(n+1) = Sum_{k=0..n} A064580(n,k). - Georg Fischer, Jul 20 2023