A159829 a(n) is the smallest natural number m such that n^3+m^3+1^3 is prime.
1, 2, 1, 2, 1, 4, 15, 2, 3, 2, 11, 10, 9, 2, 7, 14, 5, 4, 9, 2, 15, 2, 7, 16, 15, 8, 13, 2, 1, 10, 3, 4, 15, 2, 11, 10, 9, 2, 7, 6, 13, 22, 5, 2, 1, 6, 29, 10, 29, 10, 3, 2, 11, 12, 3, 8, 3, 2, 19, 6, 15, 8, 1, 2, 1, 18, 5, 2, 1, 18, 1, 12, 17, 14, 15, 26, 7, 6, 3, 2, 19, 12, 1, 18, 3, 8, 15, 2, 11, 6
Offset: 1
Keywords
Examples
2^3+2^3+1=17 = A000040(7); a(2)=2. 7^3+15^3+1=3719 = A000040(519); a(7)=15. 21^3+15^3+1=18523 = A000040(2122), a(21)=15.
References
- L. E. Dickson, History of the Theory of Numbers, Vol, I: Divisibility and Primality, AMS Chelsea Publ., 1999.
- A. Weil, Number theory: an approach through history, Birkhäuser 1984.
- David Wells, Prime Numbers: The Most Mysterious Figures in Math. John Wiley and Sons. 2005.
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A159829 := proc(n) for m from 1 do if isprime(n^3+m^3+1) then RETURN(m) ; fi; od: end: seq(A159829(n),n=1..120) ; # R. J. Mathar, Apr 28 2009
-
Mathematica
snn[n_]:=Module[{n3=n^3,m=1},While[!PrimeQ[n3+1+m^3],m++];m]; Array[ snn,100] (* Harvey P. Dale, Sep 04 2019 *)
-
PARI
a(n) = my(m=1); while (!isprime(n^3+m^3+1^3), m++); m; \\ Michel Marcus, Nov 07 2023
Extensions
Corrected and extended by R. J. Mathar, Apr 28 2009
Comments