A159865 Numerator of Hermite(n, 3/23).
1, 6, -1022, -18828, 3130860, 98465256, -15971457864, -720886192272, 113959299787152, 6785336530113120, -1044408433392582624, -78055311088952305344, 11686493481289162746048, 1061109190473073445123712, -154369376198812703738401920, -16643365586480040091602833664
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..385
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(6/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
-
Mathematica
Numerator[Table[HermiteH[n, 3/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *) Table[23^n*HermiteH[n, 3/23], {n,0,30}] (* G. C. Greubel, Jul 14 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 3/23)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(6*x - 529*x^2))) \\ G. C. Greubel, Jul 14 2018
Formula
From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 23^n * Hermite(n, 3/23).
E.g.f.: exp(6*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/23)^(n-2*k)/(k!*(n-2*k)!)). (End)