A159868 Numerator of Hermite(n, 4/23).
1, 8, -994, -24880, 2955916, 128939488, -14605279736, -935350107712, 100683900863120, 8722274518579328, -888933907869994016, -99393135669529242368, 9550267734434756419264, 1338297392335821312458240, -120648003280729069290891136, -20788045001524017834458579968
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..385
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(8/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
-
Mathematica
Numerator[Table[HermiteH[n, 4/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *) Table[19^n*HermiteH[n, 4/23], {n,0,30}] (* G. C. Greubel, Jul 14 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 4/23)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(8*x - 529*x^2))) \\ G. C. Greubel, Jul 14 2018
Formula
From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 23^n * Hermite(n, 4/23).
E.g.f.: exp(8*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/23)^(n-2*k)/(k!*(n-2*k)!)). (End)