cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159868 Numerator of Hermite(n, 4/23).

Original entry on oeis.org

1, 8, -994, -24880, 2955916, 128939488, -14605279736, -935350107712, 100683900863120, 8722274518579328, -888933907869994016, -99393135669529242368, 9550267734434756419264, 1338297392335821312458240, -120648003280729069290891136, -20788045001524017834458579968
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(8/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
  • Mathematica
    Numerator[Table[HermiteH[n, 4/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    Table[19^n*HermiteH[n, 4/23], {n,0,30}] (* G. C. Greubel, Jul 14 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 4/23)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(8*x - 529*x^2))) \\ G. C. Greubel, Jul 14 2018
    

Formula

From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 23^n * Hermite(n, 4/23).
E.g.f.: exp(8*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/23)^(n-2*k)/(k!*(n-2*k)!)). (End)