A159877 Numerator of Hermite(n, 12/23).
1, 24, -482, -62352, 33420, 264675744, 6175426056, -1531951397568, -82502038912368, 10986387695118720, 1049257719206417376, -91053796553402040576, -14396552453405934395712, 810501742160249881655808, 217462224255991218838362240, -6786058422733831994965134336
Offset: 0
Examples
Numerators of 1, 24/23, -482/529, -62352/12167, 33420/279841, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..385
Crossrefs
Cf. A009967 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(24/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018
-
Mathematica
HermiteH[Range[0,20],12/23]//Numerator (* Harvey P. Dale, Jan 09 2017 *) Table[23^n*HermiteH[n, 12/23], {n,0,30}] (* G. C. Greubel, Jul 16 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 12/23)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(24*x - 529*x^2))) \\ G. C. Greubel, Jul 16 2018
Formula
From G. C. Greubel, Jul 16 2018: (Start)
a(n) = 23^n * Hermite(n, 12/23).
E.g.f.: exp(24*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(24/23)^(n-2*k)/(k!*(n-2*k)!)). (End)