A159908 Number of pairs (p,q) of primes p <= q <= r=prime(n) such that the cyclotomic polynomial Phi(p*q*r) has no coefficient > 1 in absolute value.
1, 3, 6, 9, 13, 15, 19, 23, 27, 30, 34, 35, 43, 40, 45, 47, 54, 57, 58, 64, 69, 69, 71, 79, 79, 84, 86, 87, 97, 96, 94, 107, 106, 109, 120, 111, 120, 123, 124, 133, 135, 134, 144, 143, 143, 154, 154, 154, 163, 161, 167, 175, 174, 175, 179, 183, 187, 191, 193, 199, 197, 202, 203
Offset: 1
Links
- Robin Visser, Table of n, a(n) for n = 1..130
- Phil Carmody, "Cyclotomic polynomial puzzles", in: "primenumbers" group, May 9, 2009.
- Phil Carmody, David Broadhurst, Maximilian Hasler, Makoto Kamada, Cyclotomic polynomial puzzles, digest of 43 messages in primenumbers Yahoo group, May 9, 2009 - May 23, 2013.
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial.
Programs
-
PARI
A159908(n) = sum( i=1,n, my(pq=prime(n)*prime(i)); sum( j=1,i, vecmax(abs(Vec(polcyclo(prime(j)*pq))))==1 ))
Extensions
More terms from Robin Visser, Aug 09 2023
Comments