cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159929 INVERT transform of phi(n), A000010.

Original entry on oeis.org

1, 1, 2, 5, 11, 26, 57, 131, 296, 669, 1515, 3430, 7765, 17577, 39790, 90069, 203897, 461562, 1044847, 2365239, 5354224, 12120455, 27437267, 62110208, 140599921, 318278385, 720492104, 1630990029, 3692099407, 8357867190, 18919843773, 42829166807, 96953101328, 219474357191, 496827773575
Offset: 0

Views

Author

Gary W. Adamson, Apr 26 2009

Keywords

Comments

Number of compositions of n into parts where there are phi(k) sorts of part k. - Joerg Arndt, Sep 30 2012

Examples

			a(6) = 57 = (1, 1, 2, 2, 4, 2) dot (26, 11, 5, 2, 1, 1) = (26 + 11 + 10 + 4 + 4 + 2).
		

Crossrefs

Cf. A000010.
Row sums of A340995.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*numtheory[phi](i), i=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 22 2017
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n-i] EulerPhi[i], {i, 1, n}]];
    a /@ Range[0, 35] (* Jean-François Alcover, Oct 31 2020, after Maple *)
  • PARI
    N=66;  x='x+O('x^N);
    Vec( 1/( 1 - sum(k=1,N, eulerphi(k)*x^k ) ) - 1 )
    /* Joerg Arndt, Sep 30 2012 */

Formula

INVERT transform of A000010.
G.f.: 1/( 1 - Sum_{k>=1} phi(k) * x^k ) where phi = A000010. Joerg Arndt, Sep 30 2012
a(n) ~ c * d^n, where d = 2.26371672715382105671101924573765243871241560288177676216035633730282369149... is the root of the equation Sum_{k>=1} phi(k)/d^k = 1 and c = 0.42880036544961338799475947921442516792321060146527623589359809145075482942... - Vaclav Kotesovec, Aug 18 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 22 2017