A159929 INVERT transform of phi(n), A000010.
1, 1, 2, 5, 11, 26, 57, 131, 296, 669, 1515, 3430, 7765, 17577, 39790, 90069, 203897, 461562, 1044847, 2365239, 5354224, 12120455, 27437267, 62110208, 140599921, 318278385, 720492104, 1630990029, 3692099407, 8357867190, 18919843773, 42829166807, 96953101328, 219474357191, 496827773575
Offset: 0
Keywords
Examples
a(6) = 57 = (1, 1, 2, 2, 4, 2) dot (26, 11, 5, 2, 1, 1) = (26 + 11 + 10 + 4 + 4 + 2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-i)*numtheory[phi](i), i=1..n)) end: seq(a(n), n=0..35); # Alois P. Heinz, Sep 22 2017
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[a[n-i] EulerPhi[i], {i, 1, n}]]; a /@ Range[0, 35] (* Jean-François Alcover, Oct 31 2020, after Maple *)
-
PARI
N=66; x='x+O('x^N); Vec( 1/( 1 - sum(k=1,N, eulerphi(k)*x^k ) ) - 1 ) /* Joerg Arndt, Sep 30 2012 */
Formula
INVERT transform of A000010.
G.f.: 1/( 1 - Sum_{k>=1} phi(k) * x^k ) where phi = A000010. Joerg Arndt, Sep 30 2012
a(n) ~ c * d^n, where d = 2.26371672715382105671101924573765243871241560288177676216035633730282369149... is the root of the equation Sum_{k>=1} phi(k)/d^k = 1 and c = 0.42880036544961338799475947921442516792321060146527623589359809145075482942... - Vaclav Kotesovec, Aug 18 2021
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 22 2017
Comments