A299069
Expansion of Product_{k>=1} (1 + x^k)^phi(k), where phi() is the Euler totient function (A000010).
Original entry on oeis.org
1, 1, 1, 3, 4, 8, 11, 19, 30, 44, 69, 103, 157, 229, 341, 491, 722, 1038, 1488, 2128, 3015, 4267, 5989, 8407, 11713, 16289, 22523, 31097, 42729, 58569, 80003, 108957, 147983, 200383, 270693, 364631, 490105, 656961, 878775, 1172653, 1561626, 2074982, 2751648, 3641536, 4810009, 6341365, 8344967
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(numtheory[phi](i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Mar 09 2018
-
nmax = 46; CoefficientList[Series[Product[(1 + x^k)^EulerPhi[k], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d EulerPhi[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 46}]
A300011
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k/k!), where phi() is the Euler totient function (A000010).
Original entry on oeis.org
1, 1, 2, 6, 20, 80, 362, 1820, 10084, 60522, 391864, 2714514, 20001700, 156107224, 1284705246, 11112088358, 100698613720, 953478331288, 9410963022318, 96614921664444, 1029705968813656, 11373102766644372, 129972789566984682, 1534638410054873892, 18696544357738885720
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 2*x^2/2! + 6*x^3/3! + 20*x^4/4! + 80*x^5/5! + 362*x^6/6! + 1820*x^7/7! + ...
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
binomial(n-1, j-1)*numtheory[phi](j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 09 2018
-
nmax = 24; CoefficientList[Series[Exp[Sum[EulerPhi[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[EulerPhi[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]
-
a(n) = if(n==0, 1, sum(k=1, n, eulerphi(k)*binomial(n-1, k-1)*a(n-k))); \\ Seiichi Manyama, Feb 27 2022
A340995
Triangle T(n,k) whose k-th column is the k-fold self-convolution of the Euler totient function phi; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 4, 8, 9, 4, 1, 0, 2, 16, 19, 14, 5, 1, 0, 6, 20, 42, 36, 20, 6, 1, 0, 4, 36, 72, 89, 60, 27, 7, 1, 0, 6, 44, 134, 184, 165, 92, 35, 8, 1, 0, 4, 68, 210, 376, 391, 279, 133, 44, 9, 1, 0, 10, 76, 348, 688, 880, 738, 441, 184, 54, 10, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 2, 5, 3, 1;
0, 4, 8, 9, 4, 1;
0, 2, 16, 19, 14, 5, 1;
0, 6, 20, 42, 36, 20, 6, 1;
0, 4, 36, 72, 89, 60, 27, 7, 1;
0, 6, 44, 134, 184, 165, 92, 35, 8, 1;
0, 4, 68, 210, 376, 391, 279, 133, 44, 9, 1;
0, 10, 76, 348, 688, 880, 738, 441, 184, 54, 10, 1;
...
-
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[phi](n)), (q->
add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
-
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, EulerPhi[n]], With[{q = Quotient[k, 2]},
Sum[T[j, q]*T[n - j, k - q], {j, 0, n}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 13 2021, after Alois P. Heinz *)
A319111
Expansion of Product_{k>=1} 1/(1 - phi(k)*x^k), where phi = Euler totient function (A000010).
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 22, 38, 63, 105, 174, 278, 447, 707, 1122, 1766, 2729, 4213, 6482, 9880, 15069, 22799, 34290, 51378, 76777, 114365, 169324, 250162, 368505, 540575, 792042, 1154798, 1680385, 2439101, 3530308, 5103380, 7349875, 10564955, 15155752, 21696072, 31007949, 44199845
Offset: 0
-
with(numtheory): a:=series(mul(1/(1-phi(k)*x^k),k=1..50),x=0,42): seq(coeff(a,x,n),n=0..41); # Paolo P. Lava, Apr 02 2019
-
nmax = 41; CoefficientList[Series[Product[1/(1 - EulerPhi[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 41; CoefficientList[Series[Exp[Sum[Sum[EulerPhi[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d EulerPhi[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 41}]
A352887
Expansion of e.g.f. 1/(1 - Sum_{k>=1} phi(k)*x^k/k!), where phi is the Euler totient function A000010.
Original entry on oeis.org
1, 1, 3, 14, 84, 634, 5740, 60626, 731852, 9938670, 149966116, 2489148386, 45070961740, 884107377360, 18676602726734, 422721143355808, 10205605681874952, 261789688633794528, 7110331886095458918, 203848868169846041430, 6151813078359073154568
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, eulerphi(k)*x^k/k!))))
-
a(n) = if(n==0, 1, sum(k=1, n, eulerphi(k)*binomial(n, k)*a(n-k)));
A307073
Expansion of 1/(1 - Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2).
Original entry on oeis.org
1, 1, 4, 11, 33, 94, 279, 803, 2348, 6823, 19879, 57834, 168405, 490125, 1426824, 4153197, 12089787, 35191868, 102440785, 298194567, 868017488, 2526715121, 7355031727, 21409798576, 62321907805, 181413177769, 528076639862, 1537181201003, 4474589318797, 13025106833162, 37914855831345
Offset: 0
-
nmax = 30; CoefficientList[Series[1/(1 - Sum[MoebiusMu[k]^2 x^k/(1 - x^k)^2, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]
A307075
Expansion of 1/(1 - Sum_{k>=1} mu(k)*x^k*(1 + x^k)/(1 - x^k)^3).
Original entry on oeis.org
1, 1, 4, 15, 47, 160, 517, 1721, 5668, 18687, 61687, 203448, 671253, 2214377, 7305308, 24100319, 79506903, 262294336, 865310405, 2854666385, 9417565852, 31068622271, 102495625503, 338133855032, 1115506197957, 3680063534409, 12140557957708, 40051794232519, 132131177728807
Offset: 0
-
nmax = 28; CoefficientList[Series[1/(1 - Sum[MoebiusMu[k] x^k (1 + x^k)/(1 - x^k)^3, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Sum[MoebiusMu[k/d] d^2, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 28}]
A353192
Expansion of e.g.f. 1/(1 - Sum_{k>=1} phi(k) * x^k / k), where phi is the Euler totient function A000010.
Original entry on oeis.org
1, 1, 3, 16, 110, 986, 10202, 126288, 1770120, 27939192, 489658632, 9455296896, 198951693360, 4537680805776, 111426422418768, 2931467216681856, 82273083792879744, 2453340521239749504, 77458777017799833216, 2581489882182061744128
Offset: 0
-
phi[k_] := phi[k] = EulerPhi[k]; a[0] = 1; a[n_] := a[n] = Sum[(k - 1)! * phi[k] * Binomial[n, k] * a[n - k], {k, 1, n}]; Array[a, 20, 0] (* Amiram Eldar, Apr 30 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, eulerphi(k)*x^k/k))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (j-1)!*eulerphi(j)*binomial(i, j)*v[i-j+1])); v;
Showing 1-8 of 8 results.
Comments