cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A301511 Expansion of e.g.f. exp(Sum_{k>=1} psi(k)*x^k/k!), where psi() is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 1, 4, 14, 68, 362, 2224, 14940, 110348, 878600, 7518002, 68529122, 662709832, 6764329158, 72622813172, 817239648500, 9612724174088, 117878757097178, 1503660164683864, 19911519090176808, 273221610513382028, 3878513600608651636, 56873187579428449852, 860296560100458300892
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Comments

Exponential transform of A001615.

Examples

			E.g.f.: A(x) = 1 + x/1! + 4*x^2/2! + 14*x^3/3! + 68*x^4/4! + 362*x^5/5! + 2224*x^6/6! + 14940*x^7/7! + ...
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]; a[n_] := a[n] = SeriesCoefficient[Exp[Sum[psi[k] x^k/k!, {k, 1, n}]], {x, 0, n}]; Table[a[n] n!, {n, 0, 23}]
    psi[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]; a[n_] := a[n] = Sum[psi[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]

Formula

E.g.f.: exp(Sum_{k>=1} A001615(k)*x^k/k!).

A328053 Expansion of e.g.f. log(1 + Sum_{k>=1} phi(k) * x^k / k!), where phi = Euler totient function (A000010).

Original entry on oeis.org

0, 1, 0, 1, -3, 8, -32, 166, -926, 5842, -42812, 348632, -3088388, 29871372, -314102574, 3554714938, -43057252520, 556487433400, -7644034688586, 111160926400032, -1706191876272876, 27567942738717360, -467712309003533398, 8312805777830133096
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2019

Keywords

Comments

Logarithmic transform of A000010.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, (b-> b(n)-add(a(j)
         *binomial(n, j)*j*b(n-j), j=1..n-1)/n)(numtheory[phi]))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 06 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + Sum[EulerPhi[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = EulerPhi[n] - Sum[Binomial[n, k] EulerPhi[n - k] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]

Formula

a(n)/n! ~ -(-1)^n * d^n / n, where d = 0.8078801380543809482705136550646927880437760099284517780830096910529492372472... - Vaclav Kotesovec, Oct 17 2019

A352887 Expansion of e.g.f. 1/(1 - Sum_{k>=1} phi(k)*x^k/k!), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 3, 14, 84, 634, 5740, 60626, 731852, 9938670, 149966116, 2489148386, 45070961740, 884107377360, 18676602726734, 422721143355808, 10205605681874952, 261789688633794528, 7110331886095458918, 203848868169846041430, 6151813078359073154568
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, eulerphi(k)*x^k/k!))))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, eulerphi(k)*binomial(n, k)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} phi(k) * binomial(n,k) * a(n-k).
Showing 1-3 of 3 results.