cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A061255 Euler transform of Euler totient function phi(n), cf. A000010.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 21, 37, 60, 98, 157, 251, 392, 612, 943, 1439, 2187, 3293, 4930, 7330, 10839, 15935, 23315, 33933, 49170, 70914, 101861, 145713, 207638, 294796, 417061, 588019, 826351, 1157651, 1616849, 2251623, 3126775, 4330271, 5981190
Offset: 0

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 20; b = Table[EulerPhi[n], {n, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)

Formula

G.f.: Product_{k>=1} (1 - x^k)^(-phi(k)).
a(n) = 1/n*Sum_{k=1..n} a(n-k)*b(k), n>1, a(0)=1, b(k) = Sum_{d|k} d*phi(d), cf. A057660.
Logarithmic derivative yields A057660 (equivalent to above formula). - Paul D. Hanna, Sep 05 2012
a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / (2^(1/3) * Pi^(2/3)) - 1/6) * A^2 * Zeta(3)^(1/9) / (2^(4/9) * 3^(7/18) * Pi^(8/9) * n^(11/18)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 23 2018
G.f.: exp(Sum_{k>=1} (sigma_2(k^2)/sigma_1(k^2)) * x^k/k). - Ilya Gutkovskiy, Apr 22 2019

A301876 Expansion of Product_{k>=1} (1 + x^k)^A007434(k).

Original entry on oeis.org

1, 1, 3, 11, 23, 63, 137, 329, 738, 1618, 3562, 7578, 16116, 33540, 69384, 141608, 286493, 574173, 1140355, 2247835, 4394415, 8532983, 16450061, 31513869, 59991541, 113536117, 213659967, 399910311, 744672519, 1379758479, 2544367633
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 28 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^j * Sum[Sum[d^2 MoebiusMu[k/d], {d, Divisors @ k}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

Formula

a(n) ~ exp(2^(5/4) * Pi / 3^(5/4) * (7/(5*Zeta(3)))^(1/4) * n^(3/4)) *(7/(15*Zeta(3)))^(1/8) / (2^(15/8) * n^(5/8)).

A318975 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^phi(k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 4, 10, 20, 42, 80, 154, 288, 522, 940, 1658, 2892, 4970, 8456, 14218, 23696, 39122, 64044, 104042, 167732, 268602, 427248, 675482, 1061632, 1659298, 2579676, 3990418, 6142892, 9412906, 14360136, 21814698, 33004704, 49739426, 74677924, 111713658
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A299069 and A061255.

Examples

			a(n) ~ exp(3^(4/3) * (7*Zeta(3))^(1/3) * n^(2/3) / (2*Pi^(2/3)) - 1/6) * A^2 * (7*Zeta(3))^(1/9) / (sqrt(2) * 3^(7/18) * Pi^(8/9) * n^(11/18)), where A is the Glaisher-Kinkelin constant A074962.
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^EulerPhi[k], {k, 1, nmax}], {x, 0, nmax}], x]

A326305 Dirichlet g.f.: zeta(s-1) * (1 - 2^(-s)) / zeta(s).

Original entry on oeis.org

1, 0, 2, 1, 4, 0, 6, 2, 6, 0, 10, 2, 12, 0, 8, 4, 16, 0, 18, 4, 12, 0, 22, 4, 20, 0, 18, 6, 28, 0, 30, 8, 20, 0, 24, 6, 36, 0, 24, 8, 40, 0, 42, 10, 24, 0, 46, 8, 42, 0, 32, 12, 52, 0, 40, 12, 36, 0, 58, 8, 60, 0, 36, 16, 48, 0, 66, 16, 44, 0, 70, 12, 72, 0, 40
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 17 2019

Keywords

Comments

Moebius transform of A026741.
Dirichlet convolution of A002131 with Dirichlet inverse of A000005.
Dirichlet convolution of A000027 with Dirichlet inverse of A001511.

Crossrefs

Programs

  • Magma
    [IsOdd(n) select EulerPhi(n) else EulerPhi(n)-EulerPhi(n div 2) : n in [1..80]]; // Marius A. Burtea, Oct 17 2019
  • Mathematica
    Table[Sum[MoebiusMu[n/d] Numerator[d/2], {d, Divisors[n]}], {n, 1, 75}]
    a[n_] := If[OddQ[n], EulerPhi[n], EulerPhi[n] - EulerPhi[n/2]]; Table[a[n], {n, 1, 75}]
    f[2, e_] := If[e == 1, 0, 2^(e - 2)]; f[p_, e_] := (p - 1)*p^(e - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)

Formula

a(n) = phi(n) if n odd, phi(n) - phi(n/2) if n even, where phi = A000010.
a(n) = Sum_{d|n} mu(n/d) * A026741(d).
a(n) = Sum_{d|n} A007427(n/d) * A002131(d).
a(n) = Sum_{d|n} A092673(n/d) * d.
a(p) = p - 1, where p is odd prime.
Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A299069.
Sum_{k=1..n} a(k) ~ 9*n^2 / (4*Pi^2). - Vaclav Kotesovec, Oct 26 2019
Multiplicative with a(2^e) = 0 if e = 1 and 2^(e-2) otherwise, and a(p^e) = (p-1)*p^(e-1) for odd primes p. - Amiram Eldar, Nov 30 2020

A078747 Expansion of Sum_{k>0} k*phi(k)*x^k/(1+x^k).

Original entry on oeis.org

1, 1, 7, 5, 21, 7, 43, 21, 61, 21, 111, 35, 157, 43, 147, 85, 273, 61, 343, 105, 301, 111, 507, 147, 521, 157, 547, 215, 813, 147, 931, 341, 777, 273, 903, 305, 1333, 343, 1099, 441, 1641, 301, 1807, 555, 1281, 507, 2163, 595, 2101, 521, 1911, 785, 2757, 547
Offset: 1

Views

Author

Vladeta Jovovic, Dec 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, (4^e - 1)/3, (p^(2*e + 1) + 1)/(p + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 15 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, (4^f[i,2]-1)/3, (f[i,1]^(2*f[i,2]+1)+1)/(f[i,1]+1))); } \\ Amiram Eldar, Oct 15 2022

Formula

Multiplicative with a(2^e) = (4^e-1)/3, a(p^e) = (p^(2*e+1)+1)/(p+1), p>2.
L.g.f.: log(Product_{k>=1} (1 + x^k)^phi(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)/(4*zeta(2)) = 0.182690... (A240976). - Amiram Eldar, Oct 15 2022
Dirichlet g.f.: (zeta(s)*zeta(s-2)/zeta(s-1))*(1-2^(1-s)). - Amiram Eldar, Dec 30 2022

A226106 G.f.: exp( Sum_{n>=1} A068963(n)*x^n/n ) where A068963(n) = Sum_{d|n} phi(d^3).

Original entry on oeis.org

1, 1, 3, 9, 20, 52, 105, 253, 536, 1142, 2421, 4999, 10278, 20686, 41512, 81984, 161029, 312681, 603070, 1153284, 2189331, 4129537, 7733317, 14399693, 26644337, 49034811, 89741600, 163411148, 296074694, 533909026, 958416113, 1712893825, 3048468607, 5403248469, 9539609984
Offset: 0

Views

Author

Paul D. Hanna, May 26 2013

Keywords

Comments

Here phi(n) = A000010(n) is the Euler totient function.
Euler transform of A002618. - Vaclav Kotesovec, Mar 30 2018

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 20*x^4 + 52*x^5 + 105*x^6 + 253*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 37*x^4/4 + 101*x^5/5 + 95*x^6/6 + 295*x^7/7 + 293*x^8/8 + 505*x^9/9 +...+ A068963(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^(k*EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
    nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^EulerPhi[k^2], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[k*EulerPhi[k] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,sumdiv(m,d,eulerphi(d^3))*x^m/m)+x*O(x^n)),n)}
    for(n=0,35,print1(a(n),", "))

Formula

a(n) ~ exp(2^(9/4) * sqrt(Pi) * n^(3/4) / (3 * 5^(1/4)) + 3*Zeta(3) / Pi^2) / (2^(11/8) * 5^(1/8) * Pi^(1/4) * n^(5/8)). - Vaclav Kotesovec, Mar 30 2018

A318811 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 3, 19, 121, 1161, 9931, 124363, 1542129, 21594961, 335083411, 5712781251, 104044684393, 2036445474649, 42781075481691, 943820382272251, 22433542236603361, 556276331238284193, 14612462927067954979, 401110580118493111411, 11553483337639043003481
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, eulerphi(k)*x^k)))) \\ Seiichi Manyama, Apr 07 2022
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 07 2022

Formula

a(n) ~ 2^(1/3) * exp(1/6 + 3^(4/3) * n^(2/3) / (2^(1/3) * Pi^(2/3)) - n) * n^(n - 1/6) / (3*Pi)^(1/3).
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k * phi(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 07 2022

A301986 Expansion of Product_{k>=1} (1 + x^k)^(k*A000010(k)), where A000010 is the Euler totient function.

Original entry on oeis.org

1, 1, 2, 8, 15, 41, 75, 179, 378, 748, 1591, 3133, 6369, 12357, 24225, 46691, 89301, 169589, 318413, 596255, 1103468, 2036880, 3725353, 6786021, 12281026, 22107132, 39604155, 70566697, 125209095, 221048851, 388705826, 680465440, 1186649341, 2061086935
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(k*EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(j + 1)/j * Sum[k*EulerPhi[k] * x^(j*k), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(3/2) * 7^(1/4) * sqrt(Pi) * n^(3/4) / (3 * 5^(1/4))) * 7^(1/8) / (2^(7/4) * 5^(1/8) * Pi^(1/4) * n^(5/8)).

A328774 Product_{n>=1} (1 + x^n)^a(n) = 1 + Sum_{n>=1} phi(n) * x^n, where phi = A000010.

Original entry on oeis.org

1, 1, 1, 1, 2, -2, 4, -3, 4, -7, 14, -21, 30, -38, 50, -79, 128, -190, 286, -419, 598, -895, 1386, -2121, 3178, -4733, 7122, -10796, 16414, -25011, 38056, -57722, 87568, -133308, 203618, -311318, 475536, -726069, 1109718, -1698185, 2601166, -3987305, 6114666, -9378656, 14389676
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 27 2019

Keywords

Comments

Inverse weigh transform of A000010.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) option remember; numtheory[phi](n)-b(n, n-1) end:
    seq(a(n), n=1..45);  # Alois P. Heinz, Oct 27 2019
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := a[n] = EulerPhi[n] - b[n, n - 1]; Array[a, 45]

A321265 a(n) = [x^n] Product_{k>=1} (1 + x^k)^J_n(k), where J_() is the Jordan function.

Original entry on oeis.org

1, 1, 3, 33, 425, 12083, 665707, 68834806, 13654633905, 5535319947544, 4371956013518511, 6700051541666225780, 21029477920140943174285, 131152064162504305814647983, 1603485136950993248524876767297, 40291404321882574322412345562762188, 2031269423141309839019651314585293713041
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^Sum[d^n MoebiusMu[k/d], {d, Divisors[k]}], {k, 1, n}], {x, 0, n}], {n, 0, 16}]
    Table[SeriesCoefficient[Exp[Sum[Sum[Sum[(-1)^(k/d + 1) d j^n MoebiusMu[d/j], {j, Divisors[d]}], {d, Divisors[k]}] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 16}]

Formula

a(n) = [x^n] exp(Sum_{k>=1} ( Sum_{d|k} Sum_{j|d} (-1)^(k/d+1)*d*j^n*mu(d/j) ) * x^k/k).
Showing 1-10 of 11 results. Next