cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A301986 Expansion of Product_{k>=1} (1 + x^k)^(k*A000010(k)), where A000010 is the Euler totient function.

Original entry on oeis.org

1, 1, 2, 8, 15, 41, 75, 179, 378, 748, 1591, 3133, 6369, 12357, 24225, 46691, 89301, 169589, 318413, 596255, 1103468, 2036880, 3725353, 6786021, 12281026, 22107132, 39604155, 70566697, 125209095, 221048851, 388705826, 680465440, 1186649341, 2061086935
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(k*EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(j + 1)/j * Sum[k*EulerPhi[k] * x^(j*k), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(3/2) * 7^(1/4) * sqrt(Pi) * n^(3/4) / (3 * 5^(1/4))) * 7^(1/8) / (2^(7/4) * 5^(1/8) * Pi^(1/4) * n^(5/8)).

A226455 G.f.: exp( Sum_{n>=1} A056789(n)*x^n/n ), where A056789(n) = Sum_{k=1..n} lcm(k,n)/gcd(k,n).

Original entry on oeis.org

1, 1, 2, 5, 10, 23, 40, 86, 159, 300, 559, 1037, 1887, 3400, 6102, 10763, 19027, 33138, 57621, 99160, 169934, 289432, 490208, 826169, 1385272, 2312155, 3840729, 6354981, 10467872, 17179510, 28081845, 45740041, 74234336, 120074489, 193582842, 311102311, 498434393
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 23*x^5 + 40*x^6 + 86*x^7 + ...
where
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 19*x^4/4 + 51*x^5/5 + 48*x^6/6 + 148*x^7/7 + 147*x^8/8 + 253*x^9/9 + 253*x^10/10 + ... + A056789(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Sqrt[1-x] * Product[1/(1 - x^k)^(k*EulerPhi[k]/2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 28 2024 *)
  • PARI
    {A056789(n)=sum(k=1,n,lcm(n,k)/gcd(n,k))}
    {a(n)=polcoeff(exp(sum(m=1,n+1,A056789(m)*x^m/m)+x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1/(1 - x)) * Product_{k>=2} 1/(1 - x^k)^(phi(k^2)/2), where phi() is the Euler totient function. - Ilya Gutkovskiy, May 28 2019
a(n) ~ exp(4*sqrt(Pi)*n^(3/4)/(3*5^(1/4)) + 3*zeta(3)/(2*Pi^2)) / (2^(3/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 28 2024
Showing 1-2 of 2 results.