A301986 Expansion of Product_{k>=1} (1 + x^k)^(k*A000010(k)), where A000010 is the Euler totient function.
1, 1, 2, 8, 15, 41, 75, 179, 378, 748, 1591, 3133, 6369, 12357, 24225, 46691, 89301, 169589, 318413, 596255, 1103468, 2036880, 3725353, 6786021, 12281026, 22107132, 39604155, 70566697, 125209095, 221048851, 388705826, 680465440, 1186649341, 2061086935
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[(1+x^k)^(k*EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(j + 1)/j * Sum[k*EulerPhi[k] * x^(j*k), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x]
Formula
a(n) ~ exp(2^(3/2) * 7^(1/4) * sqrt(Pi) * n^(3/4) / (3 * 5^(1/4))) * 7^(1/8) / (2^(7/4) * 5^(1/8) * Pi^(1/4) * n^(5/8)).