cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159929 INVERT transform of phi(n), A000010.

Original entry on oeis.org

1, 1, 2, 5, 11, 26, 57, 131, 296, 669, 1515, 3430, 7765, 17577, 39790, 90069, 203897, 461562, 1044847, 2365239, 5354224, 12120455, 27437267, 62110208, 140599921, 318278385, 720492104, 1630990029, 3692099407, 8357867190, 18919843773, 42829166807, 96953101328, 219474357191, 496827773575
Offset: 0

Views

Author

Gary W. Adamson, Apr 26 2009

Keywords

Comments

Number of compositions of n into parts where there are phi(k) sorts of part k. - Joerg Arndt, Sep 30 2012

Examples

			a(6) = 57 = (1, 1, 2, 2, 4, 2) dot (26, 11, 5, 2, 1, 1) = (26 + 11 + 10 + 4 + 4 + 2).
		

Crossrefs

Cf. A000010.
Row sums of A340995.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*numtheory[phi](i), i=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 22 2017
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n-i] EulerPhi[i], {i, 1, n}]];
    a /@ Range[0, 35] (* Jean-François Alcover, Oct 31 2020, after Maple *)
  • PARI
    N=66;  x='x+O('x^N);
    Vec( 1/( 1 - sum(k=1,N, eulerphi(k)*x^k ) ) - 1 )
    /* Joerg Arndt, Sep 30 2012 */

Formula

INVERT transform of A000010.
G.f.: 1/( 1 - Sum_{k>=1} phi(k) * x^k ) where phi = A000010. Joerg Arndt, Sep 30 2012
a(n) ~ c * d^n, where d = 2.26371672715382105671101924573765243871241560288177676216035633730282369149... is the root of the equation Sum_{k>=1} phi(k)/d^k = 1 and c = 0.42880036544961338799475947921442516792321060146527623589359809145075482942... - Vaclav Kotesovec, Aug 18 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 22 2017

A065093 Convolution of A000010 with itself.

Original entry on oeis.org

1, 2, 5, 8, 16, 20, 36, 44, 68, 76, 120, 124, 188, 196, 276, 272, 404, 380, 544, 532, 716, 668, 968, 860, 1184, 1120, 1472, 1332, 1896, 1624, 2204, 2036, 2656, 2352, 3284, 2752, 3684, 3356, 4324, 3744, 5192, 4312, 5720, 5180, 6540, 5628, 7768, 6388, 8476
Offset: 1

Views

Author

Vladeta Jovovic, Nov 11 2001

Keywords

Crossrefs

Column k=2 of A340995.

Programs

  • Mathematica
    Table[Sum[EulerPhi[j]*EulerPhi[n-j], {j, 1, n-1}], {n, 2, 50}] (* Vaclav Kotesovec, Aug 18 2021 *)
  • PARI
    { for (n=1, 1000, a=sum(k=1, n, eulerphi(k)*eulerphi(n+1-k)); write("b065093.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 06 2009

Formula

a(n) = Sum_{k=1..n} phi(k)*phi(n+1-k), where phi is Euler totient function (A000010).
G.f.: (1/x)*(Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2)^2. - Ilya Gutkovskiy, Jan 31 2017
a(n) ~ (n^3/6) * c * Product_{primes p|n+1} ((p^3-2*p+1)/(p*(p^2-2))), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474) (Ingham, 1927). - Amiram Eldar, Jul 13 2024

A340994 a(n) is the (2n)-th term of the n-fold self-convolution of the Euler totient function phi.

Original entry on oeis.org

1, 1, 5, 19, 89, 391, 1817, 8429, 39697, 187849, 894965, 4282191, 20572961, 99158645, 479294877, 2322365959, 11276837761, 54860498415, 267336028565, 1304677123305, 6375749480369, 31195075605755, 152798541606529, 749184538847397, 3676699991008897
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1,
          `if`(k=1, numtheory[phi](n+1), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..29);

Formula

a(n) = [x^(2n)] (Sum_{j>=1} mu(j)*x^j/(1-x^j)^2)^n.
a(n) = A340995(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 5.0117569538757703168577972551675369123003378927616324330274512382246419... and c = 0.287455327702489527773675891801880332800309441856159133456758815116... - Vaclav Kotesovec, Aug 18 2021
Showing 1-3 of 3 results.