cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159943 Numerator of Hermite(n, 19/23).

Original entry on oeis.org

1, 38, 386, -65740, -3723284, 136726888, 24891794104, 77945890928, -181386683278960, -7552427985415072, 1440171734736484384, 134631214005677868352, -11644732516647446263616, -2151777728648689174614400, 78394097345318787274427264, 34851107415866497970816728832
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 38/23, 386/529, -65740/12167, -3723284/279841, ...
		

Crossrefs

Cf. A009967 (denominators).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(38/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018
  • Mathematica
    Numerator[HermiteH[Range[0,20],19/23]] (* Harvey P. Dale, Jan 18 2012 *)
    Table[23^n*HermiteH[n,19/23], {n,0,30}] (* G. C. Greubel, Jul 16 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 19/23)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(38*x - 529*x^2))) \\ G. C. Greubel, Jul 16 2018
    

Formula

From G. C. Greubel, Jul 16 2018: (Start)
a(n) = 23^n * Hermite(n, 19/23).
E.g.f.: exp(38*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(38/23)^(n-2*k)/(k!*(n-2*k)!)). (End)