cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A368625 Characteristic function of non-refactorable numbers (A159973).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 01 2024

Keywords

Crossrefs

Cf. A000005, A033950 (refactorable numbers), A054008, A159973, A336040.

Programs

  • Mathematica
    Table[(Ceiling[n/DivisorSigma[0, n]] - Floor[n/DivisorSigma[0, n]]), {n, 100}]
  • PARI
    A368625(n) = !!(n%numdiv(n)); \\ Antti Karttunen, Jan 17 2025

Formula

a(n) = ceiling(n/d(n))-floor(n/d(n)), where d(n) is the number of divisors of n (A000005).
a(n) = 1 - A336040(n).
a(n) = [A054008(n) > 0], where [ ] is the Iverson bracket. - Antti Karttunen, Jan 17 2025

Extensions

Data section extended up to a(105) by Antti Karttunen, Jan 17 2025

A374540 a(1) = 0; for n >= 2, a(n) is the number of iterations needed for the map x -> x/A000005(x) to reach a least integer, when starting from x = A033950(n).

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Ctibor O. Zizka, Jul 11 2024

Keywords

Comments

The refactorability "depth" for refactorable numbers. Numbers from A159973 have the refactorability "depth" 0. Records reached for A033950(A360806(n)), i.e. the growth of the sequence is very slow.

Examples

			n = 2: A033950(2) = 2, 2/A000005(2) = 1, thus a(2) = 1.
n = 3: A033950(3) = 8, 8/A000005(8) = 2 --> 2/A000005(2) = 1, thus a(3) = 2.
n = 13: A033950(13) = 80, 80/A000005(80) = 8 --> 8/A000005(8) = 2 --> 2/A000005(2) = 1, thus a(13) = 3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{v = NestWhileList[# / DivisorSigma[0, #] &, n, IntegerQ[#] && # > 1 &], len}, len = Length[v]; If[IntegerQ[v[[2]]], If[v[[-1]] == 1, len - 1, len - 2], Nothing]]; f[1] = 0; Array[f, 1200] (* Amiram Eldar, Jul 11 2024 *)

A368822 Number of compositions of n into two non-refactorable parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 4, 3, 4, 5, 4, 6, 8, 8, 8, 11, 10, 9, 10, 12, 12, 15, 14, 13, 14, 17, 16, 19, 20, 19, 20, 24, 22, 23, 22, 23, 24, 27, 24, 27, 28, 27, 28, 34, 32, 31, 32, 35, 34, 37, 36, 37, 38, 41, 38, 41, 40, 41, 40, 45, 44, 43, 44, 49, 48, 47, 48, 52, 50, 53, 50, 53, 52
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 07 2024

Keywords

Examples

			a(12) = 3 since there are 3 ordered ways to write 12 as the sum of two non-refactorable numbers: 5 + 7 = 6 + 6 = 7 + 5.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(Ceiling[k/DivisorSigma[0, k]] - Floor[k/DivisorSigma[0, k]]) (Ceiling[(n - k)/DivisorSigma[0, (n - k)]] - Floor[(n - k)/DivisorSigma[0, (n - k)]]), {k, n - 1}], {n, 100}]

Formula

a(n) = Sum_{k=1..n-1} c(k) * c(n-k), where c = A368625.
Showing 1-3 of 3 results.