A159975 Numerators (with multiplicity) of proper solutions up to 3-digit denominators of fractions with anomalous cancellation.
13, 16, 19, 26, 124, 127, 138, 139, 145, 148, 154, 161, 163, 166, 176, 182, 187, 187, 187, 199, 218, 266, 273, 275, 286, 316, 327, 364, 412, 436
Offset: 1
Examples
The first four values are the only four such cases for numerator and denominators of two digits: a(1) = 13 because 13/325 if you strike/cancel a digit "3" in numerator and denominator yields the correct 1/25. a(2) = 16 because 16/64 if you cancel a digit "6" in numerator and denominator yields the correct 1/4. a(3) = 19 because 19/95 if you cancel a digit "9" in numerator and denominator yields the correct 1/5.
References
- Boas, R. P. "Anomalous Cancellation." Ch. 6 in Mathematical Plums (Ed. R. Honsberger). Washington, DC: Math. Assoc. Amer., pp. 113-129, 1979.
- Moessner, A. Scripta Math. 19; 20.
- Ogilvy, C. S. and Anderson, J. T. Excursions in Number Theory. New York: Dover, pp. 86-87, 1988.
Links
- Shalosh B. Ekhad, Automated Generation of Anomalous Cancellations, arXiv:1709.03379 [math.HO], 2017.
- Eric W. Weisstein, Anomalous Cancellation.
Crossrefs
Formula
a(n)/A159976(n) is a proper fraction which undergoes Anomalous Cancellation.
Comments