A159981 Catalan numbers read modulo 4.
1, 1, 2, 1, 2, 2, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10000
- Rob Burns, Asymptotic density of Catalan numbers modulo 3 and powers of 2, arXiv:1611.03705 [math.NT], 2016.
- Sen-Peng Eu, Shu-Chung Liu and Yeong-Nan Yeh, Catalan and Motzkin numbers modulo 4 and 8, European Journal of Combinatorics, Vol. 29, No. 6 (2008), pp. 1449-1466. [From _R. J. Mathar_, Apr 30 2009]
- Eric Rowland and Reem Yassawi, Profinite automata, Advances in Applied Mathematics, Vol. 85 (2017), pp. 60-83; arXiv preprint, arXiv:1403.7659 [math.DS], 2014-2016. See p. 4, 6 and 7.
Programs
-
Maple
A000108 := proc(n) binomial(2*n,n)/(n+1) ; end: A159981 := proc(n) A000108(n) mod 4 ; end: seq(A159981(n),n=0..120) ; # R. J. Mathar, Apr 30 2009
-
Mathematica
Mod[CatalanNumber[Range[0,110]],4] (* Harvey P. Dale, Oct 05 2011 *)
-
PARI
A159981(n) = (binomial(2*n, n)/(n+1))%4; \\ Antti Karttunen, Jan 17 2017
Formula
a(n) = A000108(n) mod 4.
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = 0 (Burns, 2016). - Amiram Eldar, Jan 26 2021
Extensions
Extended by R. J. Mathar, Apr 30 2009
Comments