A160025 Primes p such that p^4 + 13^4 + 3^4 is prime.
3, 11, 13, 17, 31, 41, 43, 53, 83, 127, 167, 181, 193, 211, 241, 311, 337, 349, 421, 431, 487, 521, 557, 613, 617, 647, 701, 769, 811, 857, 953, 1021, 1151, 1249, 1289, 1303, 1373, 1453, 1459, 1471, 1523, 1553, 1567, 1579, 1613, 1663, 1669, 1747, 1823, 1831
Offset: 1
Examples
p = 3: 3^4 + 13^4 + 3^4 = 28723 is prime, so 3 is in the sequence. p = 5: 5^4 + 13^4 + 3^4 = 29267 = 7*37*113, so 5 is not in the sequence. p = 17: 17^4 + 13^4 + 3^4 = 112163 is prime, so 17 is in the sequence. p = 83: 83^4 + 13^4 + 3^4 = 47486963 is prime, so 83 is in the sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[ p: p in PrimesUpTo(1840) | IsPrime(p^4+28642) ]; // Klaus Brockhaus, May 03 2009
-
Mathematica
Select[Prime[Range[400]],PrimeQ[#^4+28642]&] (* Harvey P. Dale, Dec 14 2011 *)
Extensions
Edited and extended beyond 857 by Klaus Brockhaus, May 03 2009
Comments