cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160025 Primes p such that p^4 + 13^4 + 3^4 is prime.

Original entry on oeis.org

3, 11, 13, 17, 31, 41, 43, 53, 83, 127, 167, 181, 193, 211, 241, 311, 337, 349, 421, 431, 487, 521, 557, 613, 617, 647, 701, 769, 811, 857, 953, 1021, 1151, 1249, 1289, 1303, 1373, 1453, 1459, 1471, 1523, 1553, 1567, 1579, 1613, 1663, 1669, 1747, 1823, 1831
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 30 2009

Keywords

Comments

For primes p, q, r the sum p^4 + q^4 + r^4 can be prime only if at least one of p, q, r equals 3. This sequence is the special case q = 13, r = 3.
It is conjectured that the sequence is infinite.
There are prime twins (11, 13) and other consecutive primes (421, 431; 1823, 1831) in the sequence.

Examples

			p = 3: 3^4 + 13^4 + 3^4 = 28723 is prime, so 3 is in the sequence.
p = 5: 5^4 + 13^4 + 3^4 = 29267 = 7*37*113, so 5 is not in the sequence.
p = 17: 17^4 + 13^4 + 3^4 = 112163 is prime, so 17 is in the sequence.
p = 83: 83^4 + 13^4 + 3^4 = 47486963 is prime, so 83 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1840) | IsPrime(p^4+28642) ]; // Klaus Brockhaus, May 03 2009
  • Mathematica
    Select[Prime[Range[400]],PrimeQ[#^4+28642]&] (* Harvey P. Dale, Dec 14 2011 *)

Extensions

Edited and extended beyond 857 by Klaus Brockhaus, May 03 2009