A160041 Positive numbers y such that y^2 is of the form x^2+(x+73)^2 with integer x.
53, 73, 125, 193, 365, 697, 1105, 2117, 4057, 6437, 12337, 23645, 37517, 71905, 137813, 218665, 419093, 803233, 1274473, 2442653, 4681585, 7428173, 14236825, 27286277, 43294565, 82978297, 159036077, 252339217, 483632957, 926930185
Offset: 1
Keywords
Examples
(-28, a(1)) = (-28, 53) is a solution: (-28)^2+(-28+73)^2 = 784+2025 = 2809 = 53^2. (A129289(1), a(2)) = (0, 73) is a solution: 0^2+(0+73)^2 = 5329 = 73^2. (A129289(3), a(4)) = (95, 193) is a solution: 95^2+(95+73)^2 = 9025+28224 = 37249 = 193^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[53,73,125,193,365,697]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 21 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1}, {53,73,125,193,365,697}, 50] (* G. C. Greubel, Apr 21 2018 *)
-
PARI
{forstep(n=-28, 10000000, [3, 1], if(issquare(2*n^2+146*n+5329, &k), print1(k, ",")))}
-
PARI
x='x+O('x^30); Vec((1-x)*(53 +126*x +251*x^2 +126*x^3 +53*x^4)/(1 -6*x^3+x^6)) \\ G. C. Greubel, Apr 21 2018
Formula
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=53, a(2)=73, a(3)=125, a(4)=193, a(5)=365, a(6)=697.
G.f.: (1-x)*(53 +126*x +251*x^2 +126*x^3 +53*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 73*A001653(k) for k >= 1.
Comments