A160055 Positive numbers y such that y^2 is of the form x^2+(x+89)^2 with integer x.
65, 89, 149, 241, 445, 829, 1381, 2581, 4825, 8045, 15041, 28121, 46889, 87665, 163901, 273289, 510949, 955285, 1592845, 2978029, 5567809, 9283781, 17357225, 32451569, 54109841, 101165321, 189141605, 315375265, 589634701, 1102398061
Offset: 1
Keywords
Examples
(-33, a(1)) = (-33, 65) is a solution: (-33)^2+(-33+89)^2 = 1089+3136 = 4225 = 65^2. (A129298(1), a(2)) = (0, 89) is a solution: 0^2+(0+89)^2 = 7921 = 89^2. (A129298(3), a(4)) = (120, 241) is a solution: 120^2+(120+89)^2 = 14400+43681 = 58081 = 241^2.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1},{65,89,149,241,445,829},40] (* Harvey P. Dale, Feb 04 2015 *)
-
PARI
{forstep(n=-36, 10000000, [3, 1], if(issquare(2*n^2+178*n+7921, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=65, a(2)=89, a(3)=149, a(4)=241, a(5)=445, a(6)=829.
G.f.: (1-x)*(65+154*x+303*x^2+154*x^3+65*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 89*A001653(k) for k >= 1.
Comments