A160088 Numerator of Hermite(n, 2/27).
1, 4, -1442, -17432, 6237580, 126613744, -44965503224, -1287479045408, 453768009722512, 16832227624528960, -5887014913080686624, -268961938417954983296, 93340097422316232142528, 5079118464249805316316928, -1748851732685582642764208000
Offset: 0
Examples
Numerators of 1, 4/27, -1442/729, -17432/19683, 6237580/531441...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..375
Crossrefs
Cf. A009971 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(4/27)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 23 2018
-
Mathematica
Numerator[HermiteH[Range[0,20],2/27]] (* Harvey P. Dale, Mar 26 2016 *) Table[27^n*HermiteH[n, 2/27], {n, 0, 30}] (* G. C. Greubel, Sep 23 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 2/27)) \\ Charles R Greathouse IV, Jan 29 2016
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(4*x - 729*x^2))) \\ G. C. Greubel, Sep 23 2018
Formula
From G. C. Greubel, Sep 23 2018: (Start)
a(n) = 27^n * Hermite(n, 2/27).
E.g.f.: exp(4*x - 729*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/27)^(n-2*k)/(k!*(n-2*k)!)). (End)