A160098 Positive numbers y such that y^2 is of the form x^2+(x+601)^2 with integer x.
425, 601, 1261, 1289, 3005, 7141, 7309, 17429, 41585, 42565, 101569, 242369, 248081, 591985, 1412629, 1445921, 3450341, 8233405, 8427445, 20110061, 47987801, 49118749, 117210025, 279693401, 286285049, 683150089, 1630172605
Offset: 1
Keywords
Examples
(-297, a(1)) = (-297, 425) is a solution: (-297)^2+(-297+601)^2 = 88209+92416 = 180625 = 425^2. (A111258(1), a(2)) = (0, 601) is a solution: 0^2+(0+601)^2 = 361201 = 601^2. (A111258(3), a(4)) = (560, 1289) is a solution: 560^2+(560+601)^2 = 313600+1347921 = 1661521 = 1289^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..3875
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 6, 0, 0, -1).
Crossrefs
Programs
-
Magma
I:=[425,601,1261,1289,3005,7141]; [n le 6 select I[n] else 5*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, Apr 22 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1}, {425,601,1261,1289,3005,7141}, 50] (* G. C. Greubel, Apr 22 2018 *)
-
PARI
{forstep(n=-300, 10000000, [3, 1], if(issquare(2*n^2+1202*n+361201, &k), print1(k, ",")))}
-
PARI
x='x+O('x^30); Vec((1-x)*(425 +1026*x +2287*x^2 +1026*x^3 +425*x^4 )/(1-6*x^3+x^6)) \\ G. C. Greubel, Apr 22 2018
Formula
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=425, a(2)=601, a(3)=1261, a(4)=1289, a(5)=3005, a(6)=7141.
G.f.: (1-x)*(425 +1026*x +2287*x^2 +1026*x^3 +425*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 601*A001653(k) for k >= 1.
Comments