cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160117 Number of "ON" cells after n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 1, 9, 13, 41, 49, 101, 113, 189, 205, 305, 325, 449, 473, 621, 649, 821, 853, 1049, 1085, 1305, 1345, 1589, 1633, 1901, 1949, 2241, 2293, 2609, 2665, 3005, 3065, 3429, 3493, 3881, 3949, 4361, 4433, 4869, 4945, 5405, 5485, 5969, 6053, 6561, 6649, 7181, 7273
Offset: 0

Views

Author

Omar E. Pol, May 05 2009, May 15 2009

Keywords

Comments

Define "peninsula cell" to be the "ON" cell connected to the structure by exactly one of its vertices.
Define "bridge cell" to be the "ON" cell connected to two cells of the structure by exactly consecutive two of its vertices.
On the infinite square grid, we start at stage 0 with all cells in OFF state. At stage 1, we turn ON a single cell, in the central position.
In order to construct this sequence we use the following rules:
- If n is even, we turn "ON" the cells around the cells turned "ON" at the generation n-1.
- If n is odd, we turn "ON" the possible bridge cells and the possible peninsula cells.
- Everything that is already ON remains ON.
A160411, the first differences, gives the number of cells turned "ON" at n-th stage.

Examples

			If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
9...9...9...9...9
.888.888.888.888.
.878.878.878.878.
.886668666866688.
9..656.656.656..9
.886644464446688.
.878.434.434.878.
.886644222446688.
9..656.212.656..9
.886644222446688.
.878.434.434.878.
.886644464446688.
9..656.656.656..9
.886668666866688.
.878.878.878.878.
.888.888.888.888.
9...9...9...9...9
At the first generation, only the central "1" is ON, so a(1) = 1. At the second generation, we turn ON eight cells around the central cell, leading to a(2) = a(1)+8 = 9. At the third generation, we turn ON four peninsula cells, so a(3) = a(2)+4 = 13. At the fourth generation, we turn ON the cells around the cells turned ON at the third generation, so a(4) = a(3)+28 = 41. At the 5th generation, we turn ON four peninsula cells and four bridge cells, so a(5) = a(4)+8 = 49.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local r;
          r:= irem(n, 2);
          `if`(n<2, n, 5+(n-r)*((7*n-3*r)/2-5))
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 16 2011
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], (7n^2 - 10n + 10)/2, (7n^2 - 20n + 23)/2]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 16 2015, after Nathaniel Johnston *)

Formula

a(2n) = 5 + 2n(7n-5) for n>=1, a(2n+1) = 5 + 2n(7n-3) for n>=1. - Nathaniel Johnston, Nov 06 2010
G.f.: x*(x^2+1)*(4*x^3+x^2+8*x+1)/((x+1)^2*(1-x)^3). - Alois P. Heinz, Sep 16 2011

Extensions

a(10) - a(27) from Nathaniel Johnston, Nov 06 2010
a(28) - a(47) from Alois P. Heinz, Sep 16 2011