cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A160411 Number of cells turned "ON" at n-th stage of A160117.

Original entry on oeis.org

1, 8, 4, 28, 8, 52, 12, 76, 16, 100, 20, 124, 24, 148, 28, 172, 32, 196, 36, 220, 40, 244, 44, 268, 48, 292, 52, 316, 56, 340, 60, 364, 64, 388, 68, 412, 72, 436, 76, 460, 80, 484, 84, 508, 88, 532, 92, 556, 96
Offset: 1

Views

Author

Omar E. Pol, Jun 13 2009

Keywords

Comments

First differences of A160117.
It appears that one of the bisections is A008574. - Omar E. Pol, Sep 20 2011

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,2,0,-1},{1,8,4,28,8,52},100] (* Paolo Xausa, Sep 01 2023 *)

Formula

G.f.: x*(x^2+1)*(4*x^3 + x^2 + 8*x + 1) / ((x-1)^2*(x+1)^2). - Colin Barker, Mar 04 2013
From Colin Barker, Apr 06 2013: (Start)
a(n) = -11 - 9*(-1)^n + (7 + 5*(-1)^n)*n for n > 2.
a(n) = 2*a(n-2) - a(n-4) for n > 6. (End)

Extensions

a(10)-a(27) from Omar E. Pol, Mar 26 2011
More terms from Colin Barker, Apr 06 2013

A160379 Number of ON cells at n-th stage of three-dimensional version of the cellular automaton A160117 using cubes.

Original entry on oeis.org

0, 1, 27, 35, 235, 261, 881, 937, 2241, 2339, 4591, 4743, 8207, 8425, 13365, 13661, 20341, 20727, 29411, 29899, 40851, 41453, 54937, 55665, 71945, 72811, 92151, 93167, 115831, 117009, 143261, 144613, 174717, 176255, 210475, 212211, 250811, 252757, 296001
Offset: 0

Views

Author

Omar E. Pol, May 11 2009

Keywords

Comments

Each cell has 26 neighbors.

Crossrefs

Formula

a(2n) = 46n^3 - 57n^2 + 57n - 19 for n>=1, a(2n+1) = 46n^3 - 51n^2 + 57n - 17 for n>=1. [Nathaniel Johnston, Nov 06 2010]
G.f.: x*(18*x^3+x^2+26*x+1)*(x^4+4*x^2+1) / ((x-1)^4*(x+1)^3). - Colin Barker, Feb 28 2013

Extensions

Edited by Omar E. Pol, Sep 05 2009
a(6) - a(27) from Nathaniel Johnston, Nov 06 2010
a(28) - a(38) from Colin Barker, Feb 28 2013

A160414 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4).

Original entry on oeis.org

0, 1, 9, 21, 49, 61, 97, 133, 225, 237, 273, 309, 417, 453, 561, 669, 961, 973, 1009, 1045, 1153, 1189, 1297, 1405, 1729, 1765, 1873, 1981, 2305, 2413, 2737, 3061, 3969, 3981, 4017, 4053, 4161, 4197, 4305, 4413, 4737, 4773, 4881, 4989, 5313, 5421, 5745
Offset: 0

Views

Author

Omar E. Pol, May 20 2009

Keywords

Comments

The structure has a fractal behavior similar to the toothpick sequence A139250.
First differences: A161415, where there is an explicit formula for the n-th term.
For the illustration of a(24) = 1729 (the Hardy-Ramanujan number) see the Links section.

Examples

			From _Omar E. Pol_, Sep 24 2015: (Start)
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
9;
21,    49;
61,    97,  133,  225;
237,  273,  309,  417,  453, 561,  669,  961;
...
Right border gives A060867.
This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.
.
Illustration of initial terms, for n = 1..10:
.       _ _ _ _                       _ _ _ _
.      |  _ _  |                     |  _ _  |
.      | |  _|_|_ _ _ _ _ _ _ _ _ _ _|_|_  | |
.      | |_|  _ _     _ _   _ _     _ _  |_| |
.      |_ _| |  _|_ _|_  | |  _|_ _|_  | |_ _|
.          | |_|  _ _  |_| |_|  _ _  |_| |
.          |   | |  _|_|_ _ _|_|_  | |   |
.          |  _| |_|  _ _   _ _  |_| |_  |
.          | | |_ _| |  _|_|_  | |_ _| | |
.          | |_ _| | |_|  _  |_| | |_ _| |
.          |  _ _  |  _| |_| |_  |  _ _  |
.          | |  _|_| | |_ _ _| | |_|_  | |
.          | |_|  _| |_ _| |_ _| |_  |_| |
.          |   | | |_ _ _ _ _ _ _| | |   |
.          |  _| |_ _| |_   _| |_ _| |_  |
.       _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
.      |  _| |_ _|   |_ _| |_ _|   |_ _| |_  |
.      | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.      | |_ _| |                     | |_ _| |
.      |_ _ _ _|                     |_ _ _ _|
.
After 10 generations there are 273 ON cells, so a(10) = 273.
(End)
		

Crossrefs

Programs

  • Maple
    read("transforms") ; isA000079 := proc(n) if type(n,'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:
    A048883 := proc(n) 3^wt(n) ; end proc:
    A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc:
    A160414 := proc(n) add( A161415(k),k=1..n) ; end proc: seq(A160414(n),n=0..90) ; # R. J. Mathar, Oct 16 2010
  • Mathematica
    A160414list[nmax_]:=Accumulate[Table[If[n<2,n,4*3^DigitCount[n-1,2,1]-If[IntegerQ[Log2[n]],2n,0]],{n,0,nmax}]];A160414list[100] (* Paolo Xausa, Sep 01 2023, after R. J. Mathar *)
  • PARI
    my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<Altug Alkan, Sep 25 2015

Formula

a(n) = 1 + 4*A219954(n), n >= 1. - M. F. Hasler, Dec 02 2012
a(2^k) = (2^(k+1) - 1)^2. - Omar E. Pol, Jan 05 2013

Extensions

Edited by N. J. A. Sloane, Jun 15 2009 and Jul 13 2009
More terms from R. J. Mathar, Oct 16 2010

A160118 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 1, 9, 13, 41, 45, 73, 85, 169, 173, 201, 213, 297, 309, 393, 429, 681, 685, 713, 725, 809, 821, 905, 941, 1193, 1205, 1289, 1325, 1577, 1613, 1865, 1973, 2729, 2733, 2761, 2773, 2857, 2869, 2953, 2989, 3241, 3253, 3337, 3373, 3625, 3661, 3913, 4021, 4777, 4789
Offset: 0

Views

Author

Omar E. Pol, May 05 2009

Keywords

Comments

On the infinite square grid, we start at stage 0 with all square cells in the OFF state.
Define a "peninsula cell" to a cell that is connected to the structure by exactly one of its vertices.
At stage 1 we turn ON a single cell in the central position.
For n>1, if n is even, at stage n we turn ON all the OFF neighboring cells from cells that were turned in ON at stage n-1.
For n>1, if n is odd, at stage n we turn ON all the peninsular OFF cells.
For the corresponding corner sequence, see A160796.
An animation will show the fractal-like behavior (cf. A139250).
For the first differences see A160415. - Omar E. Pol, Mar 21 2011
First differs from A188343 at a(13). - Omar E. Pol, Mar 28 2011

Examples

			If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
9...............9
.888.888.888.888.
.878.878.878.878.
.8866688.8866688.
...656.....656...
.8866444.4446688.
.878.434.434.878.
.888.4422244.888.
.......212.......
.888.4422244.888.
.878.434.434.878.
.8866444.4446688.
...656.....656...
.8866688.8866688.
.878.878.878.878.
.888.888.888.888.
9...............9
In the first generation, only the central "1" is ON, a(1)=1. In the next generation, we turn ON eight "2" around the central cell, leading to a(2)=a(1)+8=9. In the third generation, four "3" are turned ON at the vertices of the square, a(3)=a(2)+4=13. And so on...
		

Crossrefs

Programs

  • Mathematica
    With[{d = 2}, wt[n_] := DigitCount[n, 2, 1]; a[n_] := If[OddQ[n], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 1)/2}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 3)/2}], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}]]; a[0] = 0; a[1] = 1; Array[a, 50, 0]] (* Amiram Eldar, Aug 01 2023 *)

Formula

From Nathaniel Johnston, Mar 24 2011: (Start)
a(2n-1) = 9 + 4*Sum_{k=2..n} A147610(k) + 28*Sum_{k=2..n-1} A147610(k), n >= 2.
a(2n) = 9 + 4*Sum_{k=2..n} A147610(k) + 28*Sum_{k=2..n} A147610(k), n >= 1.
(End)

Extensions

Entry revised by Omar E. Pol and N. J. A. Sloane, Feb 16 2010, Feb 21 2010
a(8) - a(38) from Nathaniel Johnston, Nov 06 2010
a(13) corrected at the suggestion of Sean A. Irvine. Then I corrected 19 terms between a(14) and a(38). Finally I added a(39)-a(42). - Omar E. Pol, Mar 21 2011
Rule, for n even, edited by Omar E. Pol, Mar 22 2011
Incorrect comment (in "formula" section) removed by Omar E. Pol, Mar 23 2011, with agreement of author.
More terms from Amiram Eldar, Aug 01 2023

A160720 Number of "ON" cells at n-th stage in 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 1, 5, 9, 21, 25, 37, 49, 77, 81, 93, 105, 133, 145, 173, 201, 261, 265, 277, 289, 317, 329, 357, 385, 445, 457, 485, 513, 573, 601, 661, 721, 845, 849, 861, 873, 901, 913, 941, 969, 1029, 1041, 1069, 1097, 1157, 1185, 1245, 1305, 1429, 1441, 1469, 1497
Offset: 0

Views

Author

Omar E. Pol, May 25 2009

Keywords

Comments

We work on the vertices of the square grid Z^2, and define the neighbors of a cell to be the four closest cells along the diagonals.
We start at stage 0 with all cells in OFF state.
At stage 1, we turn ON a single cell at the origin.
Once a cell is ON it stays ON.
At each subsequent stage, a cell in turned ON if exactly one of its neighboring cells that are no further from the origin is ON.
The "no further from the origin" condition matters for the first time at stage 8, when only A160721(8) = 28 cells are turned ON, and a(8) = 77. In contrast, A147562(8) = 85, A147582(8) = 36.
This CA also arises as the cross-section in the (X,Y)-plane of the CA in A151776.
In other words, a cell is turned ON if exactly one of its vertices touches an exposed vertex of a ON cell of the previous generation. A special rule for this sequence is that every ON cell has only one vertex that should be considered not exposed: its nearest vertex to the center of the structure.
Analog to the "outward" version (A266532) of the Y-toothpick cellular automaton of A160120 on the triangular grid, but here we have ON cells on the square grid. See also the formula section. - Omar E. Pol, Jan 19 2016
This cellular automaton can be interpreted as the outward version of the Ulam-Warburton two-dimensional cellular automaton (see A147562). - Omar E. Pol, Jun 22 2017

Examples

			If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
9...............9
.8.8.8.8.8.8.8.8.
..7...7...7...7..
.8.6.6.....6.6.8.
....5.......5....
.8.6.4.4.4.4.6.8.
..7...3...3...7..
.8...4.2.2.4...8.
........1........
.8...4.2.2.4...8.
..7...3...3...7..
.8.6.4.4.4.4.6.8.
....5.......5....
.8.6.6.....6.6.8.
..7...7...7...7..
.8.8.8.8.8.8.8.8.
9...............9
		

Crossrefs

Programs

  • Maple
    cellOn := [[0,0]] : bbox := [0,0,0,0]: # llx, lly, urx, ury isOn := proc(x,y,L) local i ; for i in L do if op(1,i) = x and op(2,i) = y then RETURN(true) ; fi; od: RETURN(false) ; end: bb := proc(L) local mamin,i; mamin := [0,0,0,0] ; for i in L do mamin := subsop(1=min(op(1,mamin),op(1,i)),mamin) ; mamin := subsop(2=min(op(2,mamin),op(2,i)),mamin) ; mamin := subsop(3=max(op(1,mamin),op(1,i)),mamin) ; mamin := subsop(4=max(op(2,mamin),op(2,i)),mamin) ; od: mamin ; end: for gen from 2 to 80 do nGen := [] ; print(nops(cellOn)) ; for x from op(1,bbox)-1 to op(3,bbox)+1 do for y from op(2,bbox)-1 to op(4,bbox)+1 do # not yet in list? if not isOn(x,y,cellOn) then
    # loop over 4 neighbors of (x,y) non := 0 ; for dx from -1 to 1 by 2 do for dy from -1 to 1 by 2 do # test of a neighbor nearer to origin if x^2+y^2 >= (x+dx)^2+(y+dy)^2 then if isOn(x+dx,y+dy,cellOn) then non := non+1 ; fi; fi; od: od: # exactly one neighbor on: add to nGen if non = 1 then nGen := [op(nGen), [x,y]] ; fi; fi; od: od: # merge old and new generation cellOn := [op(cellOn),op(nGen)] ; bbox := bb(cellOn) ; od: # R. J. Mathar, Jul 14 2009
  • Mathematica
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (Function[pos, CellularAutomaton[{FromDigits[Boole[#[[2, 2]] == 1 || Count[Flatten[#], 1] == 1 && Count[Extract[#, pos], 1] == 1] & /@ Tuples[{1, 0}, {3, 3}], 2], 2, {1, 1}}, {{{1}}, 0}, {{{m}}, {-m, m}, {-m, m}}]] /@ Partition[{{-1, -1}, {-1, 1}, {1, 1}, {1, -1}}, 2, 1, 1])], 2] (* JungHwan Min, Jan 23 2016 *)
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (CellularAutomaton[{#, 2, {1, 1}}, {{{1}}, 0}, {{{m}}, {-m, m}, {-m, m}}] & /@ {13407603346151304507647333602124270744930157291580986197148043437687863763597662002711256755796972443613438635551055889478487182262900810351549134401372178, 13407603346151304507647333602124270744930157291580986197148043437687863763597777794800494071992396014598447323458909159463152822826940267935557047531012112, 13407603346151304507647333602124270744930157291580986197148043437687863763597777794800494071992396014598447323458909159463152822826940286382301121240563712, 13407603346151304507647333602124270744930157291580986197148043437687863763597662002711256755796972443613438635551055889478487182262900828798293208110923778})], 2] (* JungHwan Min, Jan 23 2016 *)
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (CellularAutomaton[{46, {2, ReplacePart[ArrayPad[{{1}}, 1], # -> 2]}, {1, 1}}, {{{1}}, 0}, {{{m}}, All, All}] & /@ Partition[{{-1, -1}, {-1, 1}, {1, 1}, {1, -1}}, 2, 1, 1])], 2] (* JungHwan Min, Jan 24 2016 *)

Formula

Conjecture: a(n) = 1 + 4*(A266532(n) - 1)/3, n >= 1. - Omar E. Pol, Jan 19 2016. This formula is correct! - N. J. A. Sloane, Jan 23 2016
a(n) = 1 + 4*A267700(n-1) = 1 + 2*(A159912(n) - n), n >= 1. - Omar E. Pol, Jan 24 2016

Extensions

Edited by N. J. A. Sloane, Jun 26 2009
More terms from David Applegate, Jul 03 2009

A160119 A three-dimensional version of the cellular automaton A160118, using cubes.

Original entry on oeis.org

0, 1, 27, 35, 235, 243, 443, 499, 1899, 1907, 2107, 2163, 3563, 3619, 5019, 5411, 15211, 15219, 15419, 15475, 16875, 16931, 18331, 18723, 28523, 28579, 29979, 30371, 40171, 40563, 50363, 53107, 121707, 121715, 121915, 121971, 123371, 123427, 124827, 125219, 135019
Offset: 0

Views

Author

Omar E. Pol, May 05 2009

Keywords

Comments

Each cell has 26 neighbors.
Differs from A160379 in the same way that A160118 differs from A160117. - N. J. A. Sloane, Jan 01 2010

Crossrefs

Programs

  • Mathematica
    With[{d = 3}, wt[n_] := DigitCount[n, 2, 1]; a[n_] := If[OddQ[n], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 1)/2}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 3)/2}], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}]]; a[0] = 0; a[1] = 1; Array[a, 50, 0]] (* Amiram Eldar, Aug 01 2023 *)

Formula

From Nathaniel Johnston, Mar 24 2011: (Start)
a(2n-1) = 27 + 8*Sum_{k=1..n-1}A151785(k) + 200*Sum_{k=1..n-2}A151785(k), n >= 2.
a(2n) = 27 + 8*Sum_{k=1..n-1}A151785(k) + 200*Sum_{k=1..n-1}A151785(k), n >= 1.
In general, a d-dimensional version of the cellular automaton A160118 has its cell count given by the following formulas (where wt(k) = A000120(k)):
a(2n-1) = 3^d + (2^d)*Sum_{k=1..n-1}(2^d-1)^(wt(k)-1) + (2^d)*(3^d-2)*Sum_{k=1..n-2}(2^d-1)^(wt(k)-1), n >= 2.
a(2n) = 3^d + (2^d)*Sum_{k=1..n-1}(2^d-1)^(wt(k)-1) + (2^d)*(3^d-2)*Sum_{k=1..n-1}(2^d-1)^(wt(k)-1), n >= 1. (End)

Extensions

More terms from Omar E. Pol, May 11 2009
Edited by N. J. A. Sloane, Sep 05 2009
a(8)-a(32) from Nathaniel Johnston, Mar 24 2011
More terms from Amiram Eldar, Aug 01 2023

A160413 a(n) = A160411(n+1)/4.

Original entry on oeis.org

2, 1, 7, 2, 13, 3, 19, 4, 25, 5, 31, 6, 37, 7, 43, 8, 49, 9, 55, 10, 61, 11, 67, 12, 73, 13, 79, 14, 85, 15, 91, 16, 97, 17, 103, 18, 109, 19, 115, 20, 121, 21, 127, 22, 133, 23, 139, 24, 145, 25, 151, 26, 157, 27, 163, 28, 169, 29, 175, 30, 181, 31, 187, 32, 193
Offset: 1

Views

Author

Omar E. Pol, Jun 13 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 0, -1}, {2, 1, 7, 2, 13}, 100] (* Amiram Eldar, Feb 02 2024 *)

Formula

G.f.: x*(x^4 + 3*x^2 + x+2) / ((x-1)^2*(x+1)^2). - Colin Barker, Mar 04 2013
From Colin Barker, Apr 06 2013: (Start)
a(n) = -1 + (-1)^n - (1/4)*(-7 + 5*(-1)^n)*n for n > 1.
a(n) = 2*a(n-2) - a(n-4) for n > 5. (End)

Extensions

More terms from Colin Barker, Apr 06 2013
More terms from Amiram Eldar, Feb 02 2024

A173456 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 1, 9, 21, 25, 53, 89, 93, 121, 157, 169, 253, 361, 365, 393, 429, 441, 525, 633, 645, 729, 837, 873, 1125, 1449, 1453, 1481, 1517, 1529, 1613, 1721, 1733, 1817, 1925, 1961, 2213, 2537, 2549, 2633, 2741, 2777, 3029, 3353, 3389, 3641, 3965, 4073, 4829, 5801
Offset: 0

Views

Author

Omar E. Pol, Feb 18 2010

Keywords

Comments

On the infinite square grid, we start at stage 0 with all cells in OFF state. At stage 1, we turn ON a single cell, in the central position.
In order to construct this sequence we use the following rules:
- If n is congruent to 0 (mod 3), we turn "ON" the cells around the vertex of every convex corner formed in the structure at the generation n-1. Note that every vertex is surrounded by three new "ON" cells.
- If n is congruent to 1 (mod 3), we turn "ON" the possible peninsula cells (For the definition of peninsula cell see A160117).
- If n is congruent to 2 (mod 3), we turn "ON" the cells around the cells turned "ON" at the generation n-1.
- Everything that is already ON remains ON.
A173457, the first differences, gives the number of cells turned "ON" at n-th stage.

Examples

			Array begins:
0, 1, 9;
21, 25, 53;
89, 93, 121;
157, 169, 253;
361, 365, 393;
...
If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
7...........7
.66.66.66.66.
.65556.65556.
..545...545..
.65533.33556.
.66.32223.66.
.....212.....
.66.32223.66.
.65533.33556.
..545...545..
.65556.65556.
.66.66.66.66.
7...........7
		

Crossrefs

Formula

a(0)=0, a(n)=a(n-1)+A173457(n), n>=1

Extensions

a(41)-a(48) from Lars Blomberg, Apr 22 2013

A173460 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 1, 9, 21, 29, 81, 93, 105, 189, 225, 253, 441, 453, 465, 549, 585, 621, 873, 909, 945, 1197, 1305, 1397, 2025, 2037, 2049, 2133, 2169, 2205, 2457, 2493, 2529, 2781, 2889, 2997, 3753, 3789, 3825, 4077, 4185, 4293, 5049, 5157, 5265, 6021, 6345, 6637, 8649
Offset: 0

Views

Author

Omar E. Pol, Feb 18 2010

Keywords

Comments

On the infinite square grid, we start at stage 0 with all cells in OFF state. At stage 1, we turn ON a single cell, in the central position.
In order to construct this sequence we use the following rules:
- If n is congruent to 0 (mod 3), we turn "ON" the cells around the vertex of every convex corner formed in the structure at the generation n-1. Note that every vertex is surrounded by three new "ON" cells.
- If n is congruent to 1 (mod 3), we turn "ON" the possible bridge cells and the possible peninsula cells (For the definition of bridge cell and of peninsula cell see A160117).
- If n is congruent to 2 (mod 3), we turn "ON" the cells around the cells turned "ON" at the generation n-1.
- Everything that is already ON remains ON.
A173461, the first differences, gives the number of cells turned "ON" at n-th stage.

Examples

			Array begins:
0, 1, 9;
21, 29, 81;
93, 105, 189;
225, 253, 441;
453, 465, 549;
...
If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
7..7.....7..7
.66.......66.
.65555555556.
7.545545545.7
..553353355..
..553222355..
..545212545..
..553222355..
..553353355..
7.545545545.7
.65555555556.
.66.......66.
7..7.....7..7
		

Crossrefs

Formula

a(0)=0, a(n) = a(n-1) + A173461(n), n>=1. - [Lars Blomberg, Apr 23 2013]

Extensions

a(18)-a(47) from Lars Blomberg, Apr 23 2013

A160416 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 1, 8, 11, 32, 39, 80, 89, 146, 159
Offset: 0

Views

Author

Omar E. Pol, May 20 2009, Jun 14 2009

Keywords

Examples

			If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
..9...9...9...9...9
...888.888.888.888.
...878.878.878.878.
...886668666866688.
..9..656.656.656..9
...886644464446688.
...878.434.434.878.
...886644222446688.
..9..656.212.656..9
000000000022446688.
0000000000.434.878.
000000000064446688.
000000000056.656..9
000000000066866688.
0000000000.878.878.
0000000000.888.888.
00000000009...9...9
0000000000.........
0000000000.........
		

Crossrefs

Showing 1-10 of 11 results. Next