cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A160119 A three-dimensional version of the cellular automaton A160118, using cubes.

Original entry on oeis.org

0, 1, 27, 35, 235, 243, 443, 499, 1899, 1907, 2107, 2163, 3563, 3619, 5019, 5411, 15211, 15219, 15419, 15475, 16875, 16931, 18331, 18723, 28523, 28579, 29979, 30371, 40171, 40563, 50363, 53107, 121707, 121715, 121915, 121971, 123371, 123427, 124827, 125219, 135019
Offset: 0

Views

Author

Omar E. Pol, May 05 2009

Keywords

Comments

Each cell has 26 neighbors.
Differs from A160379 in the same way that A160118 differs from A160117. - N. J. A. Sloane, Jan 01 2010

Crossrefs

Programs

  • Mathematica
    With[{d = 3}, wt[n_] := DigitCount[n, 2, 1]; a[n_] := If[OddQ[n], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 1)/2}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 3)/2}], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}]]; a[0] = 0; a[1] = 1; Array[a, 50, 0]] (* Amiram Eldar, Aug 01 2023 *)

Formula

From Nathaniel Johnston, Mar 24 2011: (Start)
a(2n-1) = 27 + 8*Sum_{k=1..n-1}A151785(k) + 200*Sum_{k=1..n-2}A151785(k), n >= 2.
a(2n) = 27 + 8*Sum_{k=1..n-1}A151785(k) + 200*Sum_{k=1..n-1}A151785(k), n >= 1.
In general, a d-dimensional version of the cellular automaton A160118 has its cell count given by the following formulas (where wt(k) = A000120(k)):
a(2n-1) = 3^d + (2^d)*Sum_{k=1..n-1}(2^d-1)^(wt(k)-1) + (2^d)*(3^d-2)*Sum_{k=1..n-2}(2^d-1)^(wt(k)-1), n >= 2.
a(2n) = 3^d + (2^d)*Sum_{k=1..n-1}(2^d-1)^(wt(k)-1) + (2^d)*(3^d-2)*Sum_{k=1..n-1}(2^d-1)^(wt(k)-1), n >= 1. (End)

Extensions

More terms from Omar E. Pol, May 11 2009
Edited by N. J. A. Sloane, Sep 05 2009
a(8)-a(32) from Nathaniel Johnston, Mar 24 2011
More terms from Amiram Eldar, Aug 01 2023

A160415 First differences of A160118.

Original entry on oeis.org

1, 8, 4, 28, 4, 28, 12, 84, 4, 28, 12, 84, 12, 84, 36, 252, 4, 28, 12, 84, 12, 84, 36, 252, 12, 84, 36, 252, 36, 252, 108, 756, 4, 28, 12, 84, 12, 84, 36, 252, 12, 84, 36, 252, 36, 252, 108, 756, 12, 84, 36, 252, 36, 252, 108, 756, 36, 252, 108, 756, 108, 756, 324
Offset: 1

Views

Author

Omar E. Pol, Jun 13 2009

Keywords

Comments

Number of cells turned "ON" at n-th stage of the cellular automaton of A160118.

Examples

			From _Omar E. Pol_, Mar 21 2011: (Start)
If written as a triangle begins:
1,
8,
4,28,
4,28,12,84,
4,28,12,84,12,84,36,252,
4,28,12,84,12,84,36,252,12,84,36,252,36,252,108,756,
(End)
		

Crossrefs

Programs

  • Mathematica
    With[{d = 2}, wt[n_] := DigitCount[n, 2, 1]; f[n_] := If[OddQ[n], 3^d + (2^d) * Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 1)/2}] + (2^d)*(3^d - 2) * Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 3)/2}], 3^d + (2^d) * Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}] + (2^d)*(3^d - 2) * Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}]]; f[0] = 0; f[1] = 1; Differences[Array[f, 100, 0]]] (* Amiram Eldar, Feb 02 2024 *)

Extensions

More terms (a(8)-a(38)) from Nathaniel Johnston, Nov 14 2010
21 terms corrected between a(13) and a(38), and more terms (a(39)-a(48)) from Omar E. Pol, Mar 21 2011
More terms from Amiram Eldar, Feb 02 2024

A160796 Total number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton which is the "corner" structure corresponding to A160118.

Original entry on oeis.org

0, 1, 8, 11, 32, 35, 56, 65, 128, 131, 152, 161, 224, 233, 296, 323, 512, 515, 536, 545, 608, 617, 680, 707, 896, 905, 968, 995, 1184, 1211, 1400, 1481, 2048, 2051, 2072, 2081, 2144, 2153, 2216, 2243, 2432, 2441, 2504, 2531, 2720, 2747, 2936, 3017, 3584, 3593, 3656
Offset: 0

Views

Author

Omar E. Pol, Jun 13 2009, Jun 14 2009

Keywords

Comments

This bears the same relationship to A160118 as A153006 does to A139250.

Examples

			If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
..9...............9
...888.888.888.888.
...878.878.878.878.
...8866688.8866688.
.....656.....656...
...8866444.4446688.
...878.434.434.878.
...888.4422244.888.
.........212.......
00000000002244.888.
0000000000.434.878.
0000000000.4446688.
0000000000...656...
0000000000.8866688.
0000000000.878.878.
0000000000.888.888.
0000000000........9
0000000000.........
0000000000.........
		

Crossrefs

Programs

  • Mathematica
    With[{d = 2}, wt[n_] := DigitCount[n, 2, 1]; a[n_] := (5 + 3 * If[OddQ[n], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 1)/2}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 3)/2}], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}]]) / 4; a[0] = 0; a[1] = 1; Array[a, 50, 0]] (* Amiram Eldar, Aug 01 2023 *)

Formula

a(n) = 2 + (3/4)*(A160118(n) - 1) if n >= 2.

Extensions

Entry revised by Omar E. Pol and N. J. A. Sloane, Feb 16 2010
More terms from Nathaniel Johnston, Nov 13 2010
Corrected by Sean A. Irvine, Mar 23 2011, in response to correction to A160118
More terms from Amiram Eldar, Aug 01 2023

A160410 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 4, 16, 28, 64, 76, 112, 148, 256, 268, 304, 340, 448, 484, 592, 700, 1024, 1036, 1072, 1108, 1216, 1252, 1360, 1468, 1792, 1828, 1936, 2044, 2368, 2476, 2800, 3124, 4096, 4108, 4144, 4180, 4288, 4324, 4432, 4540, 4864, 4900, 5008, 5116, 5440, 5548, 5872, 6196
Offset: 0

Views

Author

Omar E. Pol, May 20 2009

Keywords

Comments

On the infinite square grid, we consider cells to be the squares, and we start at round 0 with all cells in the OFF state, so a(0) = 0.
At round 1, we turn ON four cells, forming a square.
The rule for n > 1: A cell in turned ON iff exactly one of its four vertices is a corner vertex of the set of ON cells. So in each generation every exposed vertex turns on three new cells.
Therefore:
At Round 2, we turn ON twelve cells around the square.
At round 3, we turn ON twelve other cells. Three cells around of every corner of the square.
And so on.
For the first differences see the entry A161411.
Shows a fractal behavior similar to the toothpick sequence A139250.
A very similar sequence is A160414, which uses the same rule but with a(1) = 1, not 4.
When n=2^k then the polygon formed by ON cells is a square with side length 2^(k+1).
a(n) is also the area of the figure of A147562 after n generations if A147562 is drawn as overlapping squares. - Omar E. Pol, Nov 08 2009
From Omar E. Pol, Mar 28 2011: (Start)
Also, toothpick sequence starting with four toothpicks centered at (0,0) as a cross.
Rule: Each exposed endpoint of the toothpicks of the old generation must be touched by the endpoints of three toothpicks of new generation. (Note that these three toothpicks looks like a T-toothpick, see A160172.)
The sequence gives the number of toothpicks after n stages. A161411 gives the number of toothpicks added at the n-th stage.
(End)

Examples

			From _Omar E. Pol_, Sep 24 2015: (Start)
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
    4;
   16;
   28,  64;
   76, 112, 148, 256;
  268, 304, 340, 448, 484, 592, 700, 1024;
  ...
Right border gives the elements of A000302 greater than 1.
This triangle T(n,k) shares with the triangle A256534 the terms of the column k, if k is a power of 2, for example, both triangles share the following terms: 4, 16, 28, 64, 76, 112, 256, 268, 304, 448, 1024, etc.
.
Illustration of initial terms, for n = 1..10:
.       _ _ _ _                         _ _ _ _
.      |  _ _  |                       |  _ _  |
.      | |  _|_|_ _ _ _ _ _ _ _ _ _ _ _|_|_  | |
.      | |_|  _ _     _ _     _ _     _ _  |_| |
.      |_ _| |  _|_ _|_  |   |  _|_ _|_  | |_ _|
.          | |_|  _ _  |_|   |_|  _ _  |_| |
.          |   | |  _|_|_ _ _ _|_|_  | |   |
.          |  _| |_|  _ _     _ _  |_| |_  |
.          | | |_ _| |  _|_ _|_  | |_ _| | |
.          | |_ _| | |_|  _ _  |_| | |_ _| |
.          |       |   | |   | |   |       |
.          |  _ _  |  _| |_ _| |_  |  _ _  |
.          | |  _|_| | |_ _ _ _| | |_|_  | |
.          | |_|  _| |_ _|   |_ _| |_  |_| |
.          |   | | |_ _ _ _ _ _ _ _| | |   |
.          |  _| |_ _| |_     _| |_ _| |_  |
.       _ _| | |_ _ _ _| |   | |_ _ _ _| | |_ _
.      |  _| |_ _|   |_ _|   |_ _|   |_ _| |_  |
.      | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.      | |_ _| |                       | |_ _| |
.      |_ _ _ _|                       |_ _ _ _|
.
After 10 generations there are 304 ON cells, so a(10) = 304.
(End)
		

Crossrefs

Programs

  • Mathematica
    RasterGraphics[state_?MatrixQ,colors_Integer:2,opts___]:=
    Graphics[Raster[Reverse[1-state/(colors -1)]],
    AspectRatio ->(AspectRatio/.{opts}/.AspectRatio ->Automatic),
    Frame ->True, FrameTicks ->None, GridLines ->None];
    rule=1340761804646523638425234105559798690663900360577570370705802859623\
    705267234688669629039040624964794287326910250673678735142700520276191850\
    5902735959769690
    Show[GraphicsArray[Map[RasterGraphics,CellularAutomaton[{rule, {2,
    {{4,2,1}, {32,16,8}, {256,128,64}}}, {1,1}}, {{{1,1}, {1,1}}, 0}, 9,-10]]]];
    ca=CellularAutomaton[{rule,{2,{{4,2,1},{32,16,8},{256,128,64}}},{1,
    1}},{{{1,1},{1,1}},0},99,-100];
    Table[Total[ca[[i]],2],{i,1,Length[ca]}]
    (* John W. Layman, Sep 01 2009; Sep 02 2009 *)
    a[n_] := 4*Sum[3^DigitCount[k, 2, 1], {k, 0, n-1}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 17 2017, after N. J. A. Sloane *)
  • PARI
    A160410(n)=sum(i=0,n-1,3^norml2(binary(i)))<<2 \\ M. F. Hasler, Dec 04 2012

Formula

Equals 4*A130665. This provides an explicit formula for a(n). - N. J. A. Sloane, Jul 13 2009
a(2^k) = (2*(2^k))^2 for k>=0.

Extensions

Edited by David Applegate and N. J. A. Sloane, Jul 13 2009

A160414 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4).

Original entry on oeis.org

0, 1, 9, 21, 49, 61, 97, 133, 225, 237, 273, 309, 417, 453, 561, 669, 961, 973, 1009, 1045, 1153, 1189, 1297, 1405, 1729, 1765, 1873, 1981, 2305, 2413, 2737, 3061, 3969, 3981, 4017, 4053, 4161, 4197, 4305, 4413, 4737, 4773, 4881, 4989, 5313, 5421, 5745
Offset: 0

Views

Author

Omar E. Pol, May 20 2009

Keywords

Comments

The structure has a fractal behavior similar to the toothpick sequence A139250.
First differences: A161415, where there is an explicit formula for the n-th term.
For the illustration of a(24) = 1729 (the Hardy-Ramanujan number) see the Links section.

Examples

			From _Omar E. Pol_, Sep 24 2015: (Start)
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
9;
21,    49;
61,    97,  133,  225;
237,  273,  309,  417,  453, 561,  669,  961;
...
Right border gives A060867.
This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.
.
Illustration of initial terms, for n = 1..10:
.       _ _ _ _                       _ _ _ _
.      |  _ _  |                     |  _ _  |
.      | |  _|_|_ _ _ _ _ _ _ _ _ _ _|_|_  | |
.      | |_|  _ _     _ _   _ _     _ _  |_| |
.      |_ _| |  _|_ _|_  | |  _|_ _|_  | |_ _|
.          | |_|  _ _  |_| |_|  _ _  |_| |
.          |   | |  _|_|_ _ _|_|_  | |   |
.          |  _| |_|  _ _   _ _  |_| |_  |
.          | | |_ _| |  _|_|_  | |_ _| | |
.          | |_ _| | |_|  _  |_| | |_ _| |
.          |  _ _  |  _| |_| |_  |  _ _  |
.          | |  _|_| | |_ _ _| | |_|_  | |
.          | |_|  _| |_ _| |_ _| |_  |_| |
.          |   | | |_ _ _ _ _ _ _| | |   |
.          |  _| |_ _| |_   _| |_ _| |_  |
.       _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
.      |  _| |_ _|   |_ _| |_ _|   |_ _| |_  |
.      | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.      | |_ _| |                     | |_ _| |
.      |_ _ _ _|                     |_ _ _ _|
.
After 10 generations there are 273 ON cells, so a(10) = 273.
(End)
		

Crossrefs

Programs

  • Maple
    read("transforms") ; isA000079 := proc(n) if type(n,'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:
    A048883 := proc(n) 3^wt(n) ; end proc:
    A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc:
    A160414 := proc(n) add( A161415(k),k=1..n) ; end proc: seq(A160414(n),n=0..90) ; # R. J. Mathar, Oct 16 2010
  • Mathematica
    A160414list[nmax_]:=Accumulate[Table[If[n<2,n,4*3^DigitCount[n-1,2,1]-If[IntegerQ[Log2[n]],2n,0]],{n,0,nmax}]];A160414list[100] (* Paolo Xausa, Sep 01 2023, after R. J. Mathar *)
  • PARI
    my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<Altug Alkan, Sep 25 2015

Formula

a(n) = 1 + 4*A219954(n), n >= 1. - M. F. Hasler, Dec 02 2012
a(2^k) = (2^(k+1) - 1)^2. - Omar E. Pol, Jan 05 2013

Extensions

Edited by N. J. A. Sloane, Jun 15 2009 and Jul 13 2009
More terms from R. J. Mathar, Oct 16 2010

A160720 Number of "ON" cells at n-th stage in 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 1, 5, 9, 21, 25, 37, 49, 77, 81, 93, 105, 133, 145, 173, 201, 261, 265, 277, 289, 317, 329, 357, 385, 445, 457, 485, 513, 573, 601, 661, 721, 845, 849, 861, 873, 901, 913, 941, 969, 1029, 1041, 1069, 1097, 1157, 1185, 1245, 1305, 1429, 1441, 1469, 1497
Offset: 0

Views

Author

Omar E. Pol, May 25 2009

Keywords

Comments

We work on the vertices of the square grid Z^2, and define the neighbors of a cell to be the four closest cells along the diagonals.
We start at stage 0 with all cells in OFF state.
At stage 1, we turn ON a single cell at the origin.
Once a cell is ON it stays ON.
At each subsequent stage, a cell in turned ON if exactly one of its neighboring cells that are no further from the origin is ON.
The "no further from the origin" condition matters for the first time at stage 8, when only A160721(8) = 28 cells are turned ON, and a(8) = 77. In contrast, A147562(8) = 85, A147582(8) = 36.
This CA also arises as the cross-section in the (X,Y)-plane of the CA in A151776.
In other words, a cell is turned ON if exactly one of its vertices touches an exposed vertex of a ON cell of the previous generation. A special rule for this sequence is that every ON cell has only one vertex that should be considered not exposed: its nearest vertex to the center of the structure.
Analog to the "outward" version (A266532) of the Y-toothpick cellular automaton of A160120 on the triangular grid, but here we have ON cells on the square grid. See also the formula section. - Omar E. Pol, Jan 19 2016
This cellular automaton can be interpreted as the outward version of the Ulam-Warburton two-dimensional cellular automaton (see A147562). - Omar E. Pol, Jun 22 2017

Examples

			If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
9...............9
.8.8.8.8.8.8.8.8.
..7...7...7...7..
.8.6.6.....6.6.8.
....5.......5....
.8.6.4.4.4.4.6.8.
..7...3...3...7..
.8...4.2.2.4...8.
........1........
.8...4.2.2.4...8.
..7...3...3...7..
.8.6.4.4.4.4.6.8.
....5.......5....
.8.6.6.....6.6.8.
..7...7...7...7..
.8.8.8.8.8.8.8.8.
9...............9
		

Crossrefs

Programs

  • Maple
    cellOn := [[0,0]] : bbox := [0,0,0,0]: # llx, lly, urx, ury isOn := proc(x,y,L) local i ; for i in L do if op(1,i) = x and op(2,i) = y then RETURN(true) ; fi; od: RETURN(false) ; end: bb := proc(L) local mamin,i; mamin := [0,0,0,0] ; for i in L do mamin := subsop(1=min(op(1,mamin),op(1,i)),mamin) ; mamin := subsop(2=min(op(2,mamin),op(2,i)),mamin) ; mamin := subsop(3=max(op(1,mamin),op(1,i)),mamin) ; mamin := subsop(4=max(op(2,mamin),op(2,i)),mamin) ; od: mamin ; end: for gen from 2 to 80 do nGen := [] ; print(nops(cellOn)) ; for x from op(1,bbox)-1 to op(3,bbox)+1 do for y from op(2,bbox)-1 to op(4,bbox)+1 do # not yet in list? if not isOn(x,y,cellOn) then
    # loop over 4 neighbors of (x,y) non := 0 ; for dx from -1 to 1 by 2 do for dy from -1 to 1 by 2 do # test of a neighbor nearer to origin if x^2+y^2 >= (x+dx)^2+(y+dy)^2 then if isOn(x+dx,y+dy,cellOn) then non := non+1 ; fi; fi; od: od: # exactly one neighbor on: add to nGen if non = 1 then nGen := [op(nGen), [x,y]] ; fi; fi; od: od: # merge old and new generation cellOn := [op(cellOn),op(nGen)] ; bbox := bb(cellOn) ; od: # R. J. Mathar, Jul 14 2009
  • Mathematica
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (Function[pos, CellularAutomaton[{FromDigits[Boole[#[[2, 2]] == 1 || Count[Flatten[#], 1] == 1 && Count[Extract[#, pos], 1] == 1] & /@ Tuples[{1, 0}, {3, 3}], 2], 2, {1, 1}}, {{{1}}, 0}, {{{m}}, {-m, m}, {-m, m}}]] /@ Partition[{{-1, -1}, {-1, 1}, {1, 1}, {1, -1}}, 2, 1, 1])], 2] (* JungHwan Min, Jan 23 2016 *)
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (CellularAutomaton[{#, 2, {1, 1}}, {{{1}}, 0}, {{{m}}, {-m, m}, {-m, m}}] & /@ {13407603346151304507647333602124270744930157291580986197148043437687863763597662002711256755796972443613438635551055889478487182262900810351549134401372178, 13407603346151304507647333602124270744930157291580986197148043437687863763597777794800494071992396014598447323458909159463152822826940267935557047531012112, 13407603346151304507647333602124270744930157291580986197148043437687863763597777794800494071992396014598447323458909159463152822826940286382301121240563712, 13407603346151304507647333602124270744930157291580986197148043437687863763597662002711256755796972443613438635551055889478487182262900828798293208110923778})], 2] (* JungHwan Min, Jan 23 2016 *)
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (CellularAutomaton[{46, {2, ReplacePart[ArrayPad[{{1}}, 1], # -> 2]}, {1, 1}}, {{{1}}, 0}, {{{m}}, All, All}] & /@ Partition[{{-1, -1}, {-1, 1}, {1, 1}, {1, -1}}, 2, 1, 1])], 2] (* JungHwan Min, Jan 24 2016 *)

Formula

Conjecture: a(n) = 1 + 4*(A266532(n) - 1)/3, n >= 1. - Omar E. Pol, Jan 19 2016. This formula is correct! - N. J. A. Sloane, Jan 23 2016
a(n) = 1 + 4*A267700(n-1) = 1 + 2*(A159912(n) - n), n >= 1. - Omar E. Pol, Jan 24 2016

Extensions

Edited by N. J. A. Sloane, Jun 26 2009
More terms from David Applegate, Jul 03 2009

A160117 Number of "ON" cells after n-th stage in simple 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 1, 9, 13, 41, 49, 101, 113, 189, 205, 305, 325, 449, 473, 621, 649, 821, 853, 1049, 1085, 1305, 1345, 1589, 1633, 1901, 1949, 2241, 2293, 2609, 2665, 3005, 3065, 3429, 3493, 3881, 3949, 4361, 4433, 4869, 4945, 5405, 5485, 5969, 6053, 6561, 6649, 7181, 7273
Offset: 0

Views

Author

Omar E. Pol, May 05 2009, May 15 2009

Keywords

Comments

Define "peninsula cell" to be the "ON" cell connected to the structure by exactly one of its vertices.
Define "bridge cell" to be the "ON" cell connected to two cells of the structure by exactly consecutive two of its vertices.
On the infinite square grid, we start at stage 0 with all cells in OFF state. At stage 1, we turn ON a single cell, in the central position.
In order to construct this sequence we use the following rules:
- If n is even, we turn "ON" the cells around the cells turned "ON" at the generation n-1.
- If n is odd, we turn "ON" the possible bridge cells and the possible peninsula cells.
- Everything that is already ON remains ON.
A160411, the first differences, gives the number of cells turned "ON" at n-th stage.

Examples

			If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
9...9...9...9...9
.888.888.888.888.
.878.878.878.878.
.886668666866688.
9..656.656.656..9
.886644464446688.
.878.434.434.878.
.886644222446688.
9..656.212.656..9
.886644222446688.
.878.434.434.878.
.886644464446688.
9..656.656.656..9
.886668666866688.
.878.878.878.878.
.888.888.888.888.
9...9...9...9...9
At the first generation, only the central "1" is ON, so a(1) = 1. At the second generation, we turn ON eight cells around the central cell, leading to a(2) = a(1)+8 = 9. At the third generation, we turn ON four peninsula cells, so a(3) = a(2)+4 = 13. At the fourth generation, we turn ON the cells around the cells turned ON at the third generation, so a(4) = a(3)+28 = 41. At the 5th generation, we turn ON four peninsula cells and four bridge cells, so a(5) = a(4)+8 = 49.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local r;
          r:= irem(n, 2);
          `if`(n<2, n, 5+(n-r)*((7*n-3*r)/2-5))
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 16 2011
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], (7n^2 - 10n + 10)/2, (7n^2 - 20n + 23)/2]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 16 2015, after Nathaniel Johnston *)

Formula

a(2n) = 5 + 2n(7n-5) for n>=1, a(2n+1) = 5 + 2n(7n-3) for n>=1. - Nathaniel Johnston, Nov 06 2010
G.f.: x*(x^2+1)*(4*x^3+x^2+8*x+1)/((x+1)^2*(1-x)^3). - Alois P. Heinz, Sep 16 2011

Extensions

a(10) - a(27) from Nathaniel Johnston, Nov 06 2010
a(28) - a(47) from Alois P. Heinz, Sep 16 2011

A160420 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton whose skeleton is the same network as the toothpick structure of A139250 but with toothpicks of length 4.

Original entry on oeis.org

0, 5, 13, 27, 41, 57, 85, 123, 149, 165, 193, 233, 277, 337, 429, 527, 577, 593, 621, 661, 705, 765, 857, 957, 1025, 1085, 1181, 1305, 1453, 1665, 1945, 2187, 2285, 2301, 2329, 2369, 2413, 2473, 2565, 2665, 2733, 2793, 2889, 3013, 3161, 3373, 3653, 3897, 4013
Offset: 0

Views

Author

Omar E. Pol, May 13 2009, May 18 2009

Keywords

Comments

a(n) is also the number of grid points that are covered after n-th stage by an polyedge as the toothpick structure of A139250, but with toothpicks of length 4.

Examples

			a(2)=13:
.o-o-o-o-o
.....|....
.....o....
.....|....
.....o....
.....|....
.....o....
.....|....
.o-o-o-o-o
		

Crossrefs

Formula

Conjecture: a(n) = A147614(n)+2*A139250(n). [From R. J. Mathar, Jan 22 2010]
The above conjecture is true: each toothpick covers exactly two more grid points than the corresponding toothpick in A147614.

Extensions

Definition revised by N. J. A. Sloane, Jan 02 2010.
Formula verified and more terms from Nathaniel Johnston, Nov 13 2010

A160422 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton whose virtual skeleton is a polyedge as the toothpick structure of A139250 but with toothpicks of length 6.

Original entry on oeis.org

0, 7, 19, 41, 63, 87, 131, 193, 235, 259, 303, 367, 435, 527, 675, 837, 919, 943, 987, 1051, 1119, 1211, 1359, 1523, 1631, 1723, 1875, 2071, 2299, 2631, 3087, 3489, 3651, 3675, 3719, 3783, 3851, 3943, 4091, 4255, 4363, 4455, 4607, 4803, 5031, 5363, 5819, 6223, 6411
Offset: 0

Views

Author

Omar E. Pol, May 20 2009

Keywords

Comments

a(n) is also the number of grid points that are covered after n-th stage by an polyedge as the toothpick structure of A139250, but with toothpicks of length 6.

Crossrefs

Formula

a(n) = A147614(n)+4*A139250(n) = A160420(n)+2*A139250(n) since each toothpick covers exactly four more grid points than the corresponding toothpick in A147614.

Extensions

More terms and formula from Nathaniel Johnston, Nov 13 2010

A160379 Number of ON cells at n-th stage of three-dimensional version of the cellular automaton A160117 using cubes.

Original entry on oeis.org

0, 1, 27, 35, 235, 261, 881, 937, 2241, 2339, 4591, 4743, 8207, 8425, 13365, 13661, 20341, 20727, 29411, 29899, 40851, 41453, 54937, 55665, 71945, 72811, 92151, 93167, 115831, 117009, 143261, 144613, 174717, 176255, 210475, 212211, 250811, 252757, 296001
Offset: 0

Views

Author

Omar E. Pol, May 11 2009

Keywords

Comments

Each cell has 26 neighbors.

Crossrefs

Formula

a(2n) = 46n^3 - 57n^2 + 57n - 19 for n>=1, a(2n+1) = 46n^3 - 51n^2 + 57n - 17 for n>=1. [Nathaniel Johnston, Nov 06 2010]
G.f.: x*(18*x^3+x^2+26*x+1)*(x^4+4*x^2+1) / ((x-1)^4*(x+1)^3). - Colin Barker, Feb 28 2013

Extensions

Edited by Omar E. Pol, Sep 05 2009
a(6) - a(27) from Nathaniel Johnston, Nov 06 2010
a(28) - a(38) from Colin Barker, Feb 28 2013
Showing 1-10 of 17 results. Next