cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A161417 First differences of A160416.

Original entry on oeis.org

1, 7, 3, 21, 7, 41, 9, 57, 13
Offset: 1

Views

Author

Omar E. Pol, May 20 2009, Jun 14 2009

Keywords

Crossrefs

A160720 Number of "ON" cells at n-th stage in 2-dimensional cellular automaton (see Comments for precise definition).

Original entry on oeis.org

0, 1, 5, 9, 21, 25, 37, 49, 77, 81, 93, 105, 133, 145, 173, 201, 261, 265, 277, 289, 317, 329, 357, 385, 445, 457, 485, 513, 573, 601, 661, 721, 845, 849, 861, 873, 901, 913, 941, 969, 1029, 1041, 1069, 1097, 1157, 1185, 1245, 1305, 1429, 1441, 1469, 1497
Offset: 0

Views

Author

Omar E. Pol, May 25 2009

Keywords

Comments

We work on the vertices of the square grid Z^2, and define the neighbors of a cell to be the four closest cells along the diagonals.
We start at stage 0 with all cells in OFF state.
At stage 1, we turn ON a single cell at the origin.
Once a cell is ON it stays ON.
At each subsequent stage, a cell in turned ON if exactly one of its neighboring cells that are no further from the origin is ON.
The "no further from the origin" condition matters for the first time at stage 8, when only A160721(8) = 28 cells are turned ON, and a(8) = 77. In contrast, A147562(8) = 85, A147582(8) = 36.
This CA also arises as the cross-section in the (X,Y)-plane of the CA in A151776.
In other words, a cell is turned ON if exactly one of its vertices touches an exposed vertex of a ON cell of the previous generation. A special rule for this sequence is that every ON cell has only one vertex that should be considered not exposed: its nearest vertex to the center of the structure.
Analog to the "outward" version (A266532) of the Y-toothpick cellular automaton of A160120 on the triangular grid, but here we have ON cells on the square grid. See also the formula section. - Omar E. Pol, Jan 19 2016
This cellular automaton can be interpreted as the outward version of the Ulam-Warburton two-dimensional cellular automaton (see A147562). - Omar E. Pol, Jun 22 2017

Examples

			If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
9...............9
.8.8.8.8.8.8.8.8.
..7...7...7...7..
.8.6.6.....6.6.8.
....5.......5....
.8.6.4.4.4.4.6.8.
..7...3...3...7..
.8...4.2.2.4...8.
........1........
.8...4.2.2.4...8.
..7...3...3...7..
.8.6.4.4.4.4.6.8.
....5.......5....
.8.6.6.....6.6.8.
..7...7...7...7..
.8.8.8.8.8.8.8.8.
9...............9
		

Crossrefs

Programs

  • Maple
    cellOn := [[0,0]] : bbox := [0,0,0,0]: # llx, lly, urx, ury isOn := proc(x,y,L) local i ; for i in L do if op(1,i) = x and op(2,i) = y then RETURN(true) ; fi; od: RETURN(false) ; end: bb := proc(L) local mamin,i; mamin := [0,0,0,0] ; for i in L do mamin := subsop(1=min(op(1,mamin),op(1,i)),mamin) ; mamin := subsop(2=min(op(2,mamin),op(2,i)),mamin) ; mamin := subsop(3=max(op(1,mamin),op(1,i)),mamin) ; mamin := subsop(4=max(op(2,mamin),op(2,i)),mamin) ; od: mamin ; end: for gen from 2 to 80 do nGen := [] ; print(nops(cellOn)) ; for x from op(1,bbox)-1 to op(3,bbox)+1 do for y from op(2,bbox)-1 to op(4,bbox)+1 do # not yet in list? if not isOn(x,y,cellOn) then
    # loop over 4 neighbors of (x,y) non := 0 ; for dx from -1 to 1 by 2 do for dy from -1 to 1 by 2 do # test of a neighbor nearer to origin if x^2+y^2 >= (x+dx)^2+(y+dy)^2 then if isOn(x+dx,y+dy,cellOn) then non := non+1 ; fi; fi; od: od: # exactly one neighbor on: add to nGen if non = 1 then nGen := [op(nGen), [x,y]] ; fi; fi; od: od: # merge old and new generation cellOn := [op(cellOn),op(nGen)] ; bbox := bb(cellOn) ; od: # R. J. Mathar, Jul 14 2009
  • Mathematica
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (Function[pos, CellularAutomaton[{FromDigits[Boole[#[[2, 2]] == 1 || Count[Flatten[#], 1] == 1 && Count[Extract[#, pos], 1] == 1] & /@ Tuples[{1, 0}, {3, 3}], 2], 2, {1, 1}}, {{{1}}, 0}, {{{m}}, {-m, m}, {-m, m}}]] /@ Partition[{{-1, -1}, {-1, 1}, {1, 1}, {1, -1}}, 2, 1, 1])], 2] (* JungHwan Min, Jan 23 2016 *)
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (CellularAutomaton[{#, 2, {1, 1}}, {{{1}}, 0}, {{{m}}, {-m, m}, {-m, m}}] & /@ {13407603346151304507647333602124270744930157291580986197148043437687863763597662002711256755796972443613438635551055889478487182262900810351549134401372178, 13407603346151304507647333602124270744930157291580986197148043437687863763597777794800494071992396014598447323458909159463152822826940267935557047531012112, 13407603346151304507647333602124270744930157291580986197148043437687863763597777794800494071992396014598447323458909159463152822826940286382301121240563712, 13407603346151304507647333602124270744930157291580986197148043437687863763597662002711256755796972443613438635551055889478487182262900828798293208110923778})], 2] (* JungHwan Min, Jan 23 2016 *)
    A160720[0]=0; A160720[n_]:=Total[With[{m = n - 1}, BitOr @@ (CellularAutomaton[{46, {2, ReplacePart[ArrayPad[{{1}}, 1], # -> 2]}, {1, 1}}, {{{1}}, 0}, {{{m}}, All, All}] & /@ Partition[{{-1, -1}, {-1, 1}, {1, 1}, {1, -1}}, 2, 1, 1])], 2] (* JungHwan Min, Jan 24 2016 *)

Formula

Conjecture: a(n) = 1 + 4*(A266532(n) - 1)/3, n >= 1. - Omar E. Pol, Jan 19 2016. This formula is correct! - N. J. A. Sloane, Jan 23 2016
a(n) = 1 + 4*A267700(n-1) = 1 + 2*(A159912(n) - n), n >= 1. - Omar E. Pol, Jan 24 2016

Extensions

Edited by N. J. A. Sloane, Jun 26 2009
More terms from David Applegate, Jul 03 2009

A160796 Total number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton which is the "corner" structure corresponding to A160118.

Original entry on oeis.org

0, 1, 8, 11, 32, 35, 56, 65, 128, 131, 152, 161, 224, 233, 296, 323, 512, 515, 536, 545, 608, 617, 680, 707, 896, 905, 968, 995, 1184, 1211, 1400, 1481, 2048, 2051, 2072, 2081, 2144, 2153, 2216, 2243, 2432, 2441, 2504, 2531, 2720, 2747, 2936, 3017, 3584, 3593, 3656
Offset: 0

Views

Author

Omar E. Pol, Jun 13 2009, Jun 14 2009

Keywords

Comments

This bears the same relationship to A160118 as A153006 does to A139250.

Examples

			If we label the generations of cells turned ON by consecutive numbers we get the cell pattern shown below:
..9...............9
...888.888.888.888.
...878.878.878.878.
...8866688.8866688.
.....656.....656...
...8866444.4446688.
...878.434.434.878.
...888.4422244.888.
.........212.......
00000000002244.888.
0000000000.434.878.
0000000000.4446688.
0000000000...656...
0000000000.8866688.
0000000000.878.878.
0000000000.888.888.
0000000000........9
0000000000.........
0000000000.........
		

Crossrefs

Programs

  • Mathematica
    With[{d = 2}, wt[n_] := DigitCount[n, 2, 1]; a[n_] := (5 + 3 * If[OddQ[n], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 1)/2}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, (n - 3)/2}], 3^d + (2^d)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}] + (2^d)*(3^d - 2)*Sum[(2^d - 1)^(wt[k] - 1), {k, 1, n/2 - 1}]]) / 4; a[0] = 0; a[1] = 1; Array[a, 50, 0]] (* Amiram Eldar, Aug 01 2023 *)

Formula

a(n) = 2 + (3/4)*(A160118(n) - 1) if n >= 2.

Extensions

Entry revised by Omar E. Pol and N. J. A. Sloane, Feb 16 2010
More terms from Nathaniel Johnston, Nov 13 2010
Corrected by Sean A. Irvine, Mar 23 2011, in response to correction to A160118
More terms from Amiram Eldar, Aug 01 2023
Showing 1-3 of 3 results.