cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A348604 Nonexponential abundant numbers: numbers k such that A160135(k) > k.

Original entry on oeis.org

24, 30, 42, 48, 54, 60, 66, 70, 72, 78, 84, 90, 96, 102, 114, 120, 126, 132, 138, 150, 156, 160, 162, 168, 174, 180, 186, 192, 198, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 300, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The smallest odd term is a(1357) = 8505.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 13, 148, 1595, 15688, 158068, 1578957, 15762209, 157745113, 1577808429, ... Apparently this sequence has an asymptotic density 0.157...

Examples

			24 is a term since A160135(24) = 30 > 24.
		

Crossrefs

Subsequence of A005101.
Similar sequences: A034683, A064597, A129575, A129656, A292982, A348274.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[400], q]

A348601 Nonexponential multiply-perfect numbers: numbers k such that k | A160135(k).

Original entry on oeis.org

1, 6, 40, 234, 588, 89376, 10805558400
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The corresponding quotients A160135(k)/k are 1, 1, 1, 1, 1, 2, 3, ...
a(8) > 1.5*10^10, if it exists.

Examples

			6 is a term since its nonexponential divisors are 1, 2 and 3, so A160135(6) = 1 + 2 + 3 = 6 which is divisible by 6.
40 is a term since its nonexponential divisors are 1, 2, 4, 5, 8 and 20, so A160135(40) = 1 + 2 + 4 + 5 + 8 + 20 = 40 which is divisible by 40.
		

Crossrefs

Cf. A160135.
Similar sequences: A007691, A064594, A064595, A189000, A327158.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; Select[Range[1000], Divisible[DivisorSigma[1, #] - esigma[#], #] &]

A348605 Odd nonexponential abundant numbers: odd numbers k such that A160135(k) > k.

Original entry on oeis.org

8505, 10395, 12285, 15015, 16065, 17955, 19635, 21735, 21945, 23205, 25515, 25935, 26565, 28875, 31185, 31395, 33495, 33915, 34125, 35805, 36855, 39585, 41055, 42315, 42735, 45885, 47355, 48195, 49665, 50505, 51765, 53865, 54285, 55965, 56595, 58695, 61215, 64155
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The odd terms of A348604.
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 1, 51, 360, 4117, 39803, 418663, 4099004, ... Apparently this sequence has an asymptotic density 0.0004...

Examples

			8505 is a term since A160135(8505) = 8862 > 8505.
		

Crossrefs

Cf. A160135.
Subsequence of A005231 and A348604.
Similar sequences: A094889, A127666, A129485, A293186, A321147, A348275.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[1, 65000, 2], q]

A348629 Nonexponential highly abundant numbers: numbers m such that nesigma(m) > nesigma(k) for all k < m, where nesigma(k) is the sum of nonexponential divisors of n (A160135).

Original entry on oeis.org

1, 6, 10, 12, 18, 24, 30, 42, 48, 54, 60, 78, 84, 90, 96, 120, 168, 192, 210, 240, 270, 312, 330, 360, 384, 420, 480, 630, 672, 840, 960, 1056, 1080, 1248, 1320, 1440, 1560, 1680, 1890, 1920, 2280, 2310, 2400, 2520, 2640, 2688, 3000, 3120, 3240, 3360, 4200, 4320
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The corresponding record values are 1, 6, 8, 10, 15, 30, 42, 54, 58, 60, 78, ... (see the link for more values).

Examples

			The first 6 values of nesigma(k), for k = 1 to 6 are 1, 1, 1, 1, 1 and 6. The record values, 1 and 6, occur at 1 and 6, the first 2 terms of this sequence.
		

Crossrefs

The nonexponential version of A002093.
Similar sequences: A285614, A292983, A327634, A328134, A329883, A348272.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[1] = 1; s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; sm = -1; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^4}]; seq

A348602 Smaller member of a nonexponential amicable pair: numbers (k, m) such that nesigma(k) = m and nesigma(m) = k, where nesigma(k) is the sum of the nonexponential divisors of k (A160135).

Original entry on oeis.org

198, 18180, 142310, 1077890, 1156870, 1511930, 1669910, 2236570, 2728726, 3776580, 4246130, 4532710, 5123090, 5385310, 6993610, 7288930, 8619765, 8754130, 8826070, 9478910, 10254970, 14426230, 17041010, 17257695, 21448630, 30724694, 34256222, 35361326, 37784810
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The larger counterparts are in A348603.

Examples

			198 is a term since A160135(198) = 204 and A160135(204) = 198.
		

Crossrefs

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 1.7*10^6}]; seq

A348603 Larger member of a nonexponential amicable pair: numbers (k, m) such that nesigma(k) = m and nesigma(m) = k, where nesigma(k) is the sum of the nonexponential divisors of k (A160135).

Original entry on oeis.org

204, 19332, 168730, 1099390, 1292570, 1598470, 2062570, 2429030, 3077354, 3903012, 4488910, 6135962, 5504110, 5812130, 7158710, 8221598, 9627915, 10893230, 10043690, 11049730, 10273670, 18087818, 19150222, 17578785, 23030090, 32174506, 35997346, 40117714, 39944086
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The terms are ordered according to their smaller counterparts (A348602).

Examples

			204 is a term since A160135(204) = 198 and A160135(198) = 204.
		

Crossrefs

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, m]], {n, 1, 1.7*10^6}]; seq

A348628 Numbers k such that k and k+1 have the same sum of nonexponential divisors (A160135).

Original entry on oeis.org

1, 2, 3, 4, 15, 44, 674, 478899
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

Numbers k such that A160135(k) = A160135(k+1).
a(9) > 1.6 * 10^11, if it exists.

Examples

			2 is a term since A160135(2) = A160135(3) = 1.
15 is a term since A160135(15) = A160135(16) = 9.
		

Crossrefs

Cf. A160135.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A348346.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[1] = 1; s[n_] := DivisorSigma[1, n] - esigma[n]; Select[Range[500000], s[#] == s[# + 1] &]

A348630 Nonexponential superabundant numbers: numbers m such that nesigma(m)/m > nesigma(k)/k for all k < m, where nesigma(m) is the sum of nonexponential divisors of m (A160135).

Original entry on oeis.org

1, 24, 30, 96, 120, 480, 840, 3360, 13440, 30240, 36960, 120960, 147840, 272160, 332640, 1330560, 2993760, 4324320, 17297280, 38918880, 73513440, 220540320, 294053760, 661620960, 1396755360, 2646483840, 5587021440, 12570798240
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The least term k with nesigma(k)/k > m for m = 2, 3, 4, ... is 480, 332640, 1396755360, ...

Crossrefs

Subsequence of A348629.
The nonexponential version of A004394.
Similar sequences: A002110 (unitary), A037992 (infinitary), A061742, A292984, A329882, A348273.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[1] = 1 ;s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; rm = -1; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]],{n, 1, 10^6}]; seq

A348631 Nonexponential weird numbers: nonexponential abundant numbers (A348604) that are not equal to the sum of any subset of their nonexponential divisors.

Original entry on oeis.org

70, 4030, 5830, 10430, 10570, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17570, 17990, 18410, 18830, 18970, 19390, 19670, 19810, 20510, 21490, 21770, 21910, 22190, 23170, 23590, 24290
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Examples

			70 is a term since the sum of its nonexponential divisors, {1, 2, 5, 7, 10, 14, 35}, is 74 > 70, and no subset of these divisors sums to 70.
		

Crossrefs

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; neDivs[1] = {}; neDivs[n_] := Module[{d = Divisors[n]}, Select[d, ! expDivQ[n, #] &]]; nesigma[n_] := Total@neDivs[n]; neAbundantQ[n_] := nesigma[n] > n; neWeirdQ[n_] := neAbundantQ[n] && Module[{d = neDivs[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] == 0]; Select[Range[6000], neWeirdQ]

A348606 Numbers k such that k and k+1 are both nonexponential abundant numbers.

Original entry on oeis.org

21735, 76544, 170624, 301664, 345344, 348704, 382304, 739935, 862784, 1218944, 1262624, 1272704, 1314495, 1370655, 1376864, 1539615, 1558304, 1707615, 1718144, 1761375, 1845375, 1890944, 1926015, 2100735, 2132864, 2223584, 2415104, 2463615, 2581215, 2675295, 2747744
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Examples

			21735 is a term since A160135(21735) = 21930 > 21735 and A160135(21736) = 23230 > 21736.
		

Crossrefs

Cf. A160135.
Subsequence of A096399 and A348604.
Similar sequences: A318167, A327635, A327942, A331412, A348276.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[1, 3*10^6], q[#] && q[#+1] &]
Showing 1-10 of 12 results. Next