cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A160145 a(n) = the odd number 2n+1 minus the numerator of (2n+1)/(2^(2n+1)-1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 150
Offset: 0

Views

Author

Peter Luschny, May 03 2009

Keywords

Comments

Explains the similarity of the sequences A009843 and A160143. (Cf. also the pair A036279 and A156769.) The first nonzero values occur at n = 10, 31, 52 and 73.
Previous name was: Odd numbers 2n+1 minus the numerators of (2n+1)/(4^(2n+1)-2^(2n+1)), (A005408 - A160144). - Altug Alkan, Apr 21 2018

Crossrefs

Programs

  • Maple
    seq((2*n+1)-numer((2*n+1)/(4^(2*n+1)-2^(2*n+1))),n=0..77);
    seq((2*n+1)-numer((2*n+1)/(2^(2*n+1)-1)),n=0..100); # Altug Alkan, Apr 21 2018
  • Mathematica
    Array[# - Numerator[#/(2^# - 1)] &[2 # + 1] &, 78, 0] (* Michael De Vlieger, Apr 21 2018 *)
  • PARI
    forstep(k=1, 1e2, 2, print1(k - numerator(k/(2^k-1)), ", ")); \\ Altug Alkan, Apr 21 2018

Formula

a(n) = A005408(n) - A160144(n).

Extensions

Name simplified by Altug Alkan, Apr 21 2018

A160143 a(n) = Numerator((-1)^n*Euler(2*n)*(2*n+1)/(4^(2*n+1)-2^(2*n+1))), where Euler(n) = A122045(n).

Original entry on oeis.org

1, 3, 25, 427, 12465, 555731, 35135945, 2990414715, 329655706465, 45692713833379, 1111113564712575, 1595024111042171723, 387863354088927172625, 110350957750914345093747
Offset: 0

Views

Author

Peter Luschny, May 03 2009

Keywords

Comments

Resembles the coefficients of the series for x/cos(x).
The first difference with sequence A009843 (expansion of x/cos(x)) occurs at a(10). An explanation can be found in the similarity of the numerators of (2*n+1)/(2^(2*n+1)-1) and the odd numbers 2n+1 (cf. A160144).
Similarly, A156769 resembles A036279 (from the expansion of tan(x)).

Crossrefs

Programs

  • Maple
    a := n -> (-1)^iquo(n,2)*euler(n)*(n+1)/(4^(n+1)-2^(n+1));
    seq(numer(a(2*n)),n=0..13);

A193476 The denominators of the Bernoulli secant numbers at odd indices.

Original entry on oeis.org

2, 56, 992, 16256, 261632, 4192256, 67100672, 1073709056, 17179738112, 274877382656, 628292059136, 70368735789056, 1125899873288192, 18014398375264256, 288230375614840832, 4611686016279904256, 73786976286248271872, 1180591620683051565056
Offset: 0

Views

Author

Peter Luschny, Aug 17 2011

Keywords

Comments

Denominator of the coefficient [x^(2n)] of sec(x)*(2*n+1)!/(4*16^n-2*4^n), that is, a(n) is the denominator of A000364(n)*(2*n+1)/(4*16^n-2*4^n). [Edited by Altug Alkan, Apr 22 2018]
Numerators are A160143. [Corrected by Peter Luschny, Mar 18 2021]
A193475(n) = 4*16^n-2*4^n is similar, but differs at n = 10, 31, 52, 73, 77, 94, ...

Crossrefs

Programs

  • Maple
    gf := (f,n) -> coeff(series(f(x),x,n+4),x,n):
    A193476 := n -> denom(gf(sec,2*n)*(2*n+1)!/(4*16^n - 2*4^n)):
    seq(A193476(n), n = 0..17); # Altug Alkan, Apr 23 2018
  • Mathematica
    a[n_] := Sum[Sum[Binomial[k, m] (-1)^(n+k)/(2^(m-1)) Sum[Binomial[m, j]*(2j - m)^(2n), {j, 0, m/2}]*(-1)^(k-m), {m, 0, k}], {k, 1, 2n}] (2n+1)/ (4*16^n - 2*4^n) // Denominator; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jun 26 2019, after Vladimir Kruchinin in A000364 *)
  • PARI
    a(n) = denominator(subst(bernpol(2*n+1), 'x, 1/4)*2^(2*n+1)/(2^(2*n+1)-1)); \\ Altug Alkan, Apr 22 2018 after Charles R Greathouse IV at A000364

A303449 Denominator of (2*n+1)/(2^(2*n+1)-1).

Original entry on oeis.org

1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 299593, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311, 2251799813685247
Offset: 0

Views

Author

Altug Alkan, Apr 24 2018

Keywords

Comments

If A160145(n) = 0, then a(n) = A083420(n).
Least values of k such that a(k) = A083420(k)/A036259(n) are 0, 10, 126, 77, 540, 73, 1242, 328, 1540, 489 for 1 <= n <= 10.

Crossrefs

Cf. A005408, A036259, A083420, A160144 (numerators), A160145.

Programs

  • Maple
    seq(denom((2*n+1)/(2^(2*n+1)-1)), n=0..25);
  • PARI
    a(n) = denominator((2*n+1)/(2^(2*n+1)-1));
    
  • PARI
    forstep(k=1, 1e2, 2, print1(denominator(k/(2^k-1)), ", "));
Showing 1-4 of 4 results.